

Mireless word

Ozsi ON $5870 \wedge$ GL6L 7Iydy aาyom SSヨาヨyiM

A Synthesized Signal Generator from $\mathbf{~ m i}$ £8,000? £6,000? £4,000? under $£ 2,000$?

Somehow some of our customers have been persuaded that our prices are as big as we are. Sometimes the biggest brains are the most cost-conscious brains. For example, our illustration shows a synthesized signal generator which costs $£ 1,900^{*}$: the new 520 MH TF2015/I Signal Generator with its associated
Synchronizer. With this combination, synthesizer Synchronizer. With this combination, synthesizer
operation is obtainable without any degradation of generator signal purity, performance and versatility. Leakage specification is lower than any other
available VHF UHF source and available VHF/UHF source and output accuracy at low
levels beats all others in the price range. levels beats all others in the price range. TF2015 for performance, reliability and value, we have now introduced two new a.m. If.m. versions: the TF2015/I for narrow band mobile radio testing and TF2015/2 for telemetry and other wideband applications. The U.K. price for TF2015/2 with Synchronizer is
$£ 2,150^{*}$. All have a frequency coverage of 10 to 520 MHz $\pm 2,150^{*}$. All have a frequency
with calibrated a.m. and f.m.
mi MARCONI INSTRUMENTS
Marconi Instruments Limited - Longacres - St. Albans - Hertfordshire - England AL4 0jN • Tel: (0727) $\mathbf{5 9 2 9 2}$ - Telex: 23350

Marconi Instruments - 32 avenue des Ecoles - 91600 Savigny-Sur-Orge - France - Tê: 996.03 .86 . Télex: 600541 .F
Marconi Mestechnik $G \mathrm{mbH} \cdot 8000$ München 21 förgstrasse 74 . West Germany - Tel: (089) $582041 \cdot$ Telex: 5212642
provides a valuable facility for bandwidth measurements and channel stepping. Digital setting of frequency with direct readout means no waiting for counter gate times when you want higti resolution, and no r.f. leakage from display holes *Special U.K. pric
One in four
Only on
Only one in four of our customers tells us he needs the stability of a synthesizer. So the other three can save
almost half the cost of the synthesizer combination by almost half the cost of the syntesizer combination by
buying the analogue part alone. So, whether you require a synthesizer or a signal generator you can now obtain quality at ordinary prices.
Optional accessories include Pulse Modulator TF2169, i.f. probes for 'squelch killing', multiple calibration plates calibration p
case. reverse power protection and carrying case. Write or 'phone for full details:

Front cover shows the pro totype keyboard of the
scientific together with a display of trigonometric values. Part 1 of the constructional design
starts in this issue.

IN OUR NEXT ISSUE Converting between an-
alogue and digital quantalogue and digital quan
ities -1 is the first par of a series of articles on this topical subject, star-
ting with a discussion of ting with a discussion of Acoustic breakthrough in record players. Meas urements of the se
sitivity of the pickup arm/turntable combina-
tion to tion to loudspeaker
sound in various operating conditions.

Current issue price 40p, back issue
lif availabele) 50 p at Retail
Trade Trade Counter, Paris Garden, Lon
don SE1. Available on microfilm. please contact editor. By post. current issue 55p, back
issues (if avaiable) 50p. order pay
 House, London SE1 9 9U,
Editorial $\&$ Advertising office Dorset House, Stamford Street Lendon SE1 9LU Tolitophones: Editorial 01-26 Telephones: Editorial 01-26.
8620. Advertising $01-2618339$.
Tolegrams Trelegrams/Tolex: Wiworld Bis
nespres 25137 BISPRS G. Cables
 Subscription rates: 1 year \&7.00
UK and $\$ 23.40$ overseas $\{\$ 24$ USA and Canadal.).
Sudent rate: 1 as
 Distribution: 40 Bowling Green
Lane. London EC1R ONE. Lane. London EC1R
Telephone $01-8373636$. Subscriptions: Oakfield House
Peirymount Road. Hayward Perrymount Road. Haywards
Heath, Sussex. RH16 3 DH
Telephone 0444459188 . Telephone 04459188,
notify a change of address.
 the Printed Word Lldd, 52 Madison
Avenue, Suite 1217 , New York, NY
10022, 2nd-class posis. 10022, , 2ndeclass postage paid a
New New ork.
-ISC Business Press Ltd, 1979
ISSN 0043 . 1062
ibpa ABC

wireless world

ELECTRONICS /TELEVISION / RADIO / AUDIO
APRIL 1979 Vol 85 No 1520

43 Micromania
44 Scientific computer
by J. H. Adams
48 Literature received
49 Simplified distortion measurements by F. Butler
53 Teletext remote control
by R. T. Russell
56 Books received
57 Digital data recording without f.s.k
by B.T. Evans
62 Circuit ideas
Mosfet input power amp/Hexadecimal display/Noise-reduction system
64 News of the month
66 Novatexts - Linear ramp generators by P. Williams

68 Low-cost logic analyser

THINKOF A SHAPE

The range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems

S500D

Dual Channel
$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high
500 w r.m.s. into 2.5 ohms per channe 900w r.m.s. in bridge mode DC-20 KHZ at full power 0.005\% harmonic distortion (typical) at $300 \mathrm{wr.m.s}$. into 4 ohms at 1 KHZ 3KW dissipation from in-built force cooled dissipators

S 250D

 Single Channel$19^{\prime \prime}$ rack mount $31 / 2^{\prime \prime}$ high 500 w r.m.s. into 2.5 ohms Retro-convertible to dual channe DC-20 KHZ at full power Full short and open circuit protection Drives totally reactive loads with no adverse effects

A complete range of matching transformers and peripheral equipment for closed loop, A comstant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to Alternative input and output termination to

Kirkham
Electronics
MILL HALL MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIVISION OF K.R.S. LIMITED
TELEPHONE (037 976) 639/59
FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR WW-029 FOR FURTHER DETAILS ELECTRONIC

The MK 14 is a complete microcomputer with a programmed PROMs, and a 265 -byte RAM As such the MK 14 can handle doze user-written programs through the hexadecima keyboard. Yet in kit form, the
$+\ldots 3.20 \mathrm{VAT}$, and $p \& p$).
More memory - and peripherals
Optional extras include:

1. xtra RAM-256 bytes.

PCBj giving further 128 bytes of RAM. . Low-cost cassette interface module-which means you can use ordinary tape cassettes.
recorder for storage. of data and programs. 4. Revised monitor, to get the most from the cassette interface module. It consists of 2 ,
replacement $P R O M$, pre-programmed with sub-routines for the interface, offset calculations and single step, and single
5. PROM programmer and blank PROMs to se up your onn pre-programmed dedicated applications.
All are available now to owners of MK 14. A valuable tool-and a training aid As a computer, it handles operations of all ypes - from complex games to digital alarm
lock functioning, from basic maths to a puls leck functioning, from basic maths to a pul
drograms are in the Manual, ogether with instructions for creating your ow genuinely valuable programs. And, of cou providing an
technology.

PPECIEICATIONS

Hexadecimal keyboard \bullet-digit 7 -segment onitor program and interface instrainuctions 256 bytes of RAM $04 \mathrm{MHze}^{2}$ crystala $\bullet \mathrm{VV}$ eguiator Single 8 V power supply \bullet Space
vailable for extra 256 -byte RAM and 16 port /O \bullet Edge connector access to all data lines nd I/O ports
Free Manua
Every MK 14 kit includes a Manual which deals with procedures from soldering techniques to interfacing with complex external equipment.
It includes 20 sample programs incliding math routines (square root, etc), digital alarm clock, ingle-step, music box, mastermind and moon landing games, self-replication, general
purpose sequencing

Moresecond UsG oareans from carton

Top Quality Test Equipment at the keenest prices

Eddystone Radio Limited

Member of Marconi Communication Systems Limited
Alvechurch Road, Birmingham B31 3PP, England
Telephone: 021-4752231 Telex: 337081
WW - 057 FOR FURTHER DETAILS

MULTMETERSTOTHE FORE

Gould Advance proudly present our new Alpha IV. The fourth generation of an outstanding multimeter, its price of
is so reasonable when compared to those of its competitors - in these inflationary times.
While the improved spec and high reliability are
experience we gained from the first three models.
experience we gained from the first three models. The Alpha IV measures a.c. and d.c. voltage and current, plus
resistance - with a choice of 25 accurate measurement ranges. A 2000 Count' large, clear I.c.d. display. Plus a two-year guarantee (in common with all our instruments). May we send you the data, forthwith?

Alpha IV

TheHewlett-Packard SolidState Alphanumeric Display System.

Isit trying totell you something?

The new HDSP-2400 series is a breakthrough that provides a better product at a significanthroy lower price.
With the high cost of engineering time there's no longer any advantage in producing your own systems when you can get them off-the-shelf from Crellon-and know that they'll work.
First time and every time.
The HDSP-2400 series gives a completely supported 5×7 dot matrix display panel that frees the user's system
from display maintenance and minimises the interaction normally
required for this type of display. required for this type or display.
There are two parts-an alphanumeric display controller with programmed microprocessor plus associated logic and a display panel, matched for luminous intensity. Prices speak for themselves-display boards cost from
$£ 134.03$ to $£ 254.20$ and control panels from $£ 51.44$ to $£ 67.52$ depending on the number of characters. These are one-off costs and there are considerable benefits for quantity orders.
Main features are as follows:
Choice of 64,128, ASCII
or user defined character set. \star Choice of $16,24,32$ or 40 element display panel.
\star Single 5.0 volt power supply.
Easily interfaced to a keyboard or microprocessor.
\star
Multiple data entry formats-left, right or block entry.
\star Editing features that include cursor, backspace,
© forwardspace, insert, delete and clear
tTL compatible.

$\because \because$
For full data telephone or complete Reader Service Card. 380 Bath Road, Slough, 380 Bath Road, Slough, Berks. SL1 6JE.
Tel: Burnham (06286) 4434 . Telex 847571

The Ultimate Multi-mate

It's easy to see why Philips PM 2517 digital multimeter is called The Ultimate Multi-mate. No other DMM comes near it combination of laboratory performance and handy form for such a handy price. Take a features it packs in cks in Full 4-digit display giving higher resolution for 80 $31 / 2$ digits.
LED or LCD readout no extra cost.
Autoranging with
manual override.
 WW - 085 FOR FURTHER DETALLS Tel: Ware 3966); and Philips Service Centres ('phone' 01-686-0505 for the address of your nearest branch). It can also be purchased from the U.K marketing organisation

PHILIPS

OK, which of you Power Schottkys is ready to talk reliability and performance?

(now be honest)
scopefor Transients recording

Recording transients using ntional recorders is ory because the natural esonant frequency of pens and galvanometers may well distort the ald An

An oscilloscope eliminates these problems but would normally only capable of capturing one event, torage a storage CRT or digita termanent record may be mad recral camera a tedious rocedure that involves a skilled

A Fibre Optic Recorder allows the with paper advance between each event. Alternatively if the paper is
driven continuously to provide a
strip chart recording, rapid events strip chart recording, rapid events the high efficiency of the FOR system. The Raster mode provides effectively continuous recording for long periods with good time resolution and excellent paper economy. also used for Optic Reco developm fosearch and Digil and many other fields.
medelec EDELEC LIMITED
Telephone: Woking (04862) 70331 elex: 859141 . Medlec G

Reliability

TRW supplied its first customer with Power Schottky devices in 1972 and he's still buying. His eturn rate is still nil. He knows that he doesn'thave to worry about them failing in low voltage, high current switching power supply applications. HE knows that when he gets a shipment he can use hem without any worries. Hundreds of other cus tomers have had the same experience.

Performance
The SD-51 in the DO-5 package has the best overall performance around for switching power supplies with $5.0 \mathrm{~V} @ 60 \mathrm{amps}$. $\mathrm{VF}_{\mathrm{F}}=0.6 \mathrm{~V}$ @ 60 A P.I.V. -45 V and $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$.) For 5.0 V @ 30 amps the SD-41 in the DO-4 package can cut system heat exchangers and cooling devices.

MCP Electronics Ltd.
Alperton, Wembley, Middx.
Tel: 01-902 5941

And that's straight talk If you'd like help with your Aw voltage, high current switching power supply designs just call MCP Electronics on 01-902 5941.

MCP Electronics Ltd.
 Alperton, Wembley, Middx.

Please send me fu
Name
Company
Address

TRM POWER SEMICONDUCTORS

Put Fluke to the Test

A Digital Multimeter on 14 days approval

If you've ever wanted to challenge the claim of a leading instrument
manufacturer then here is your chance. Fluke are so confident that you will appreciate the fine qualities of their multimeters that we would invite you to put them through their paces.
Simply select either the handheld or bench models at the special low price, complete and clip the coupon. We then pay the VAT,
approval.
If during the 14 day period you're not completely satisfied with its performance, return it to us and your money will be refunded. Are you going to put us to the test?

Drake Transformers

DRAKE TRANSFORMERS LIMITED
South Green Works
Kennel Lane. Billericay, Essex CM1112SP
Telephone. iillericicy (0274) 51155 . Telephone. Billericay (O2774) 51155
Telex 99426 (prefix message DRAKE)

WW-019 For further detalls
A. D. BAYLISS \& SON LTD. Behind this name there's a lot of real POWER!
Illustrated right is a TITAN DRILL
 Also vaiabbe to to susion ine stand is the RELIANT DRILL Which is a smaler version of the Titan. TITAN DRILL \& STAND Titan ofll only RELIANT DRILL \& STAND RELIANT ORILL ONLY
TITAN MIN DRILL KIT
Drill Plis 20 Tools RELIANT MINI DRILL KIT

 back uo the power tools. Expo cffer a comprehensive selection of Drills, Grinding Points and

Model 8100 Frequency counter kit $£ 69.95$
assembled tested: $£ 84.95$
(lus p.p. $£ 3.50$ and VAT Tt 8%)

The Winners

These two products are our best sellers!

The two products shown above from Sabtronics
are our best sell ing products. Both these products
compare with similar equipment selling for atleas compare with similar equipment selling for atlea
$£ 150.00$. Is there more to these products than $\mathcal{E} 150.00$. Is there more to these
value? Let's take a closer look.
The Frequency Counter Model 8100 The Frequency Counter Model 8100
It employs LSI Technology, has the and characteristics you demand, guaranteed requency range of 20 Hz to 100 , MHz; selectable hi/Io impedance; superior sensitivity; selectable
resolution and selectable attenuation. Plus an
 LED Display features flo oxting decimal lopoint, leading
zero suppresion and overlow indicator.
Brief specifications: Brief specifications:
Frequency Range: 20 Hz to 100 MHz guaranteed,
$(10 \mathrm{~Hz}$ to 130 MHz typical) - Sensitivity: 10 mV RMS,

20 Hz to $50 \mathrm{MHz}(5 \mathrm{mV}$ typical); 15 mV RMS, 50 MHz
 $1 \mathrm{M} \Omega / 25 \mathrm{pF}$ or 50 N - -Atenuation: $\mathrm{X} 1, \times 10$ or $\mathrm{X} 100-$
Accuracy: $\pm 1 \mathrm{~Hz}$ plus time base accuracy-Aging
 0° to $55^{\circ} \mathrm{C}$-Resolution: $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ selecta

- Display: 8 -digit LED, floating P , overfiow - Display: 8 -digit LED, floating DP, overfilo
indicato - Overlaod Protection - Power indicator - Overload Prot.
Requirement: $9-15 \mathrm{VDC}$
Ontional prescaler will be Optional pres
March 1979.
- March

The DMM Model 2000
The model 2000 is all solid-state, incorporating a
he model 2000 is all solid-state, incorporating a
single LSI circuit and high quality components.
single LSI circuit and high quality components.
It has five functions and a total of 28 ranges. Input
overlod protection, auto polarity and auto zero
overload protection, auto polarity and auto overload protection, auto polarity and aut
are provided on all ranges and a basic DCV .
accuracy of $0.1 \%+1$ digit.

WW-039 FOR FURTHER DETALLS

METER PROBLEMS?

3

Our new catalogue lists circuit board accessories for all your projects - DIP sockets, piris, standfor all your projects-DIP sockets, piris, stand-
offs, cable clips, hand tools. And we've got circuit boards, module systems, cases and boxes - everything you need to give your equipment the quality you demand. Send 25 p to cover postage and packing, and the catalogue's yours. VERO ELECTRONICS LTD. RETAIL DEPT. Industrial Estate, Chandlers Ford, Hants. SO5 3ZR
Telephone Chandlers Ford (04215) 2956

137 Standard Ranges in a variety of sizes and stylings available for
days delivery. Other Ranges and special scales can be inade to order

Full Information from:

HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD, W.C. 1 Phone: 01/837/7937 WW-025 FOR FURTHER DETAILS

The Ultimate milti-mate

It's easy to see why Philips PM 2517 digital multimeter is called The Ultimate Multi-mate

Full 4-digit display giving higher resolution than $31 / 2$ digits Foll 8 -digit display giving higher resolution than 30% of measurements. Parameter readout, too. Choice of LED or LCD display - choose the one that suits you, Choice of LED or LCD display - choose the one that suits you,
the price is the same. Mains unit supplied free with LED version Autoranging with manua override. Average auto two seconds.
True RMS rather than "average" detection. The Ulitimate Multi-mate measures nonsinewave AC signals more accurately High accuracy necessary to make full use of those
four digits. An four digits. An
impressive 0.2% of reading $\pm 0.05 \%$ of reading ± 0.0
of scale on d.c. volts. Current to 10A via a separate input is
standard, not standard, not
optional, on he PM 2517
Overload protection That is so comprehensive you
have to try very hard to do e damage, even with marns and booster volitages

Wessex Electronics Ltd $114-116$ North Street Rank Radio International, Wa

combination of laboratory performance and handy form - for such a handy price. Take a look at some of the features it packs in

Small and sturdy construction makes this DMM ideal for bench or field work.

Ergonomic design allows it to work in any position without fuss or fumble

sabtronics
 Model $20000^{1 / 2}$
Kit
Kit
assmb.95 assembled. $£ 69.95$
(plus p.p. $£ 3.00$ and VAT at 8%)
$+$ Bref specifications.
DC volts in 5 ranges: 100μ to $1 \mathrm{kV}-\mathrm{AC}$ volts in
5 ranges: $100 \mu \mathrm{VV}$ to $1 \mathrm{kV}-\mathrm{DC}$ current in 6 ranges: 5 ranges: $100 \mu V$ to 1 kV - DC current in 6 ranges:
100 nA to $2 A-A C$ current in 6 ranges: 100 nA to $2 A-$ Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges -
AC frequency response 40 Hz to 50 kHz - Displa AC frequency response: 40 Hz to 50 kHz - Display:
$0.30^{\prime \prime}(1,9,7 \mathrm{~mm}) 7$-segment $\mathrm{LED}-$ Input impedance: $10 \mathrm{M} \Omega$-Size: $8^{\prime \prime} \mathrm{W} \times 6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(203 \times 165 \times 76 \mathrm{~mm}$) - Power requirement: 4 " C " cells (not included).

Order yours no Timwood Ltd.

Timwood Ltd. Prospect Road, Cowes,
Isle of Wight, England Telex 86892
Send payment with

KGM TV MONITORS 0 the big cholce
 Type 224 - the ruggedized monitor for those really demanding situations - extremes of weather, temperature, vibration and frequent change of site.
 Standard KGM monitors range from $12^{\prime \prime}-24^{\prime \prime}$. Our long experience of CCTV enables us to meet almost any special requirement.
 VDU's - visual display units have also been supplied in large numbers to suit customers' requirements. Tell us your needs and we will gladly quote.
 Send for your data sheets on the full range of CCTV monitors and cameras designed and manufactured by KGM. KGM also supply an extensive range of ancillaries and distribution units.
 HEPA Electronics Clock Tower Road, Isleworth,
 ww-031 FOR FURTHER UMITED Tel: 01-568 0151. Telex: 934120

PRODUCTION
TESTING
DEVELOPMENT
SERVICING
Now available with
3 OUTPUTS

FOR POWER SEMICONDUCTORS

ISR

INTERNATIONAL RECTIFIER

Diodes Thyristors

Fuses for protecting Semiconductors Power Transistors Potted Bridges Solid State Relays
Silicon Stacks Surge Suppressors

IN A HURRY! 070-681 4931

HARMSWORTH, TOWNLEY \& CO. LTD. HAREHILL TODMÓRDEN LANCS OL14 5JY Phone: 0706812601 and 0706815246

Understanding Digital Electronics

New teach-yourself courses

Design of Digitial Systems is written for the engineer seeking to lear
more about digiatelecertronics. Its six volumes - each A4 size - ar
packed with intormation Dacked with information, diagrams and questions designed to lead yo
step-by-step through number systems and Boolean step-by-step through number systems and Boolean algebra to
memories counters and simple aritmetic circuits, and tinally too
complete understanding of the design and operation of calculatators and

The contents of Design of Digital Systems include
Book 1 Octal, hexadecimaland binary number systems conversion
between number systems; representation of negative numbers beiween number systems,
complementary systems; binary multiplication and division
Book NAND, NOR and exclusive-NOR functions; multiple input gates; truth tables; De Morgans Laws; canonical forms; logic conventions
Karnaugh mapping; three-state and wired iogic Book 3 Half adders and tulil addersi, subbractors: serial and parallel
adders: processors and arithmetic logic units (ALUs); multiplication and division systems.
Book 4 Flip flops; shift registers; asynchronous and synchronous counters, ring. Johnson and exclusive-OR teedback counters,
access memories $(R A M s)$ and read only memories (ROMs) Book 5 Structure of calculators: ; evyooard encoding; decoding display
data; register systems; control unit program ROM; address do data; register systems; control unit; program ROM; address decoding
instruction sets; instruction decoding; control program structure Book 6 Central processing unit (Co.P), memory organisation
character representation program storage: address modes. input character representation; program storage; address modes: input
output systems; program interrupts; interrupt priorities; programming assemblers; computers; executive programs; operating systems añ
time sharing.

Digital Computer Logic and Electro beginer. No mathematical knowledgecothene than simple arithmetic is
assumed. though the student should have an antitud assumed ithough the student should have an aptitude for logical
thought. It consists of four volumes - each A4 size - and serves as an introduction to the subject of digital electronics. Everyone can learn
from - 1 Contents include Binary, octal and decimal number systems
conversion between number systems: AND, OR, NOR and NAND conversion between number systems: AND, OR NNR and NAND
gates and inverters Boolean algebra and truth tables: De Morgans
Laws: design of logic circuits using NOR gates: R-S and J-K flip flips
binary counters. shift registers and half adders.
CAMBRIDE LEARNING ENTERPRISES, UNIT 37, RIVERCAMBRIDGE LEARNING ENTERPRISES, UNIT 37, RIVERMILL
PE17 7 4BR, ERELLAND TELEPHONE: ST. IVES (0480) 67446 Propaletors: darkioge lto. Reg. office: Rivermill logge. St. ves

In the years ahead the products of digital electronics technology will play
an important part in your life. Calculators and digital watches are already commonnlace. Tomorrow a digital display could show your vehicle speed and petrol consumption you could be calling poopole by entering
their name into a telephone which would automatically look up their their neme into a telephone which would automatically look up theit
number and dial it for you. These courses were written by experts in electronics and learning
systems so that you could teach yourself the theory and application of digital logic. Learning by self-instruction has the advantages of bein
faster and more thorough than classrom learning. You work at your wn pace and must respond by answering questions on each new pie
of information before proceeding. information before proceeding
 changing technological worid around you.
The six volumes of Design of
Digital Systems cost only:
And the four volumes of And the four volumes of
Digital Computer Logic and
\&4.60

+90 p pos 1 \& packing

Flow Charts \& Algorithms
HELP YOU PRESENT
safety procedures, government legislation, office procedures, teaching materials and computer
programs by means of YES and NO answers to questions.
IHE ALGORITHiM WRITER'S GUIDE explains how to define the questions, put them in the best orde and draw the flow chart, with numerous examples
shown. All that students require is an aptitude for logical thought. Size A5, 130 pages. This book is a MUST for those with things to say.
$£ 2.95+45$ p post \& packing by surface mail
extra.

GUARANTEE
ly you are notentiely saisified your móney will be refunded

Freepost,
England
Please send me the following books
...sets Digital Compolowing books
included Logic \& Electronics @ $£ 5.50$, p\&p
.sets Design of Digital Systems @ $£ 9.00$, p\&p included
Combined sets @ $£ 13.00$, p\&p included
Addres

I enclose a cheque/PO payable to Cambridge Learning EnterPrisesese charge my -Access/Barclaycard Visa/Eurocard Mastercharge / Interbank account number
\qquad

WAIFORD ELEGTRONICS

33 CARDIFF ROAD. WATFORD, herts, england
Tel. Watford 40588/9.

DM 900

THERE ARE 900 REASONS FOR BUYING THIS MULTIMETER (with direct reading capacitance range)
Its 900 cubic centimetres are packed with up to the minute technology offering a low cost yet accurate method of measuring voltage, current, resistance and
capacitance too, on a total of 30 RANGES. The
RAN WATFORD ELECTRONICS DM 900 uses latest MOS ntegrated Circuits which drive a $31 / 2$ digit Liquid Crystal Display for extremely low power consumption.

The DM900 incorporates dual slope A/D conversion
true auto zero; polarity and overrange indication; battery true auto zero; polatity and overrange impedance of over
and display test facilities. Its input imped $10 \mathrm{M} \Omega$ allows voltage measurements in high impedance circuits without distorting circuit operation.
The DM900 is small and robust. It measures only $160 \times$ $95 \times 60 \mathrm{~mm}$ and is housed in an ABS case which will fit in your coat pocket or briefcase.
The DM900 has been specially designed for Watford ready built. Special Offer: $\mathbf{£ 8 8 . 5 0}$ plus VAT (p\&p insured add 80p) Also available in Kit form for the Enthusiast at $£ 54.50$ plus VAT plus 80 p (probes and carrying case $£ 3.00$ extra).

ELECTRONIC
INDUSTRIAL THERMOMETER

THE MODERN WAY TO MEASURE TEMPERATURE A Thermometer designed to poperate as an Elicctronic Test Meter. W
measure temperature of Air. Metals, Liquidids. Machinerr, etc., etc. measure temperature of Air. Metals. Liquids. Machinery, etc., etc.,
Just plug-in the Probe, and read the temperature on the large oper
scale meter. Supplied with carrying case, Probe and internal $1 / 1 / 2$:

 Write for further details (VAT 8% EXTRA)
HARRIS ELECTRONICS (LONDON)
138 GRAY'S INN ROAD, LONDON, WC1X 8AX (Phone 01-837 7937)
ww-025 FOR FURTHER DETAILS

"Comparisons are odorous"
We are often asked by audio enthusiasts how our amplifier compares with so and so's product, and they are surprise never tried.

It is not that we are unwilling to learn from other people's mistakes, it is simply that at Quad we recognise nly one standard for comparison, namely the original. hat we wish to know is how the output of the equipment under investigation compares with the original signal fed into it.

Over the years we have developed experimental techniques which enable us to investigate the audible contribution of a piece of equipment to a music signal and as a resur 405* consay wies absolutely no audible degradation to the signal fed through it, and that's close to the original as you need to get

For further details on the full range of QUAD products write to
The Acoustical Manufacturing Co. Ltd.,
Huntingdon, Cambs. PEl8 7DB.
Telephone:(0480) 52561
*or 303 or 33 . When operated within specified input and output

OUAD

for the closest approach to the original sound oup is a eqisted Tade Mark

20

Al TMU S(HI) ARTGEROT

$\begin{array}{ll}\text { Convenient - solders anywhere } & \text { Complete safety } \\ \text { Quick heating - under } 7 \text { secs. } & \text { Up to } 350 \text { joints/charge }\end{array}$ Leak age free - no earthing

The LITESOLD C35 cordless rechargeable iron is indispensable where an electrical supply is not available or a connecting
lead is inconvenient. The iron recharges completely in 8 hours from its mains
power unit, and cannot be overcharged. The built-in nickel cad-
 mium batteries give operating temperature withint secondy
oressing the operating button, which if fitted with a safty lock
Twin spot lights give clear, shadowless illumination of the work
 and an additional light in the body shows
operating and also when it is on charge.
Prices Including Postage, Packing and V.A.T.
Prices Including Postage, Packing and V.A.T.
C35 Curdess
Iron complete with mains power unit, standard tip C35D for work kup to 2.5 sa.mm. deatachable light fittings.
cleaning sponge and miniature screw driver for tip changing $£ 1.61$ cleaning sponge and miniature screw driver for tip changing $£ 21.6$
As above but including spare tip $C 35 \mathrm{~F}$ for fine joints up to
 $\begin{array}{ll}\text { Spare tip C35D (Standard) } & £ 1.97 \\ \text { Spare tip C35 (Fine) } \\ \text { Spare tip C35G (Broad) } & £ 2.20 \\ \mathrm{E2} 2.32\end{array}$

Light Soldering Developments Ltd. 97-99 Gloucester Road, Crovdon, Surrey CRO 2DN. England.
Telephone 01-689-0574 Telex 8811945

WW - 103 FOR FURTHER DETAILS

Cutout the magniyingglass!
You don't need a magnifying glass to find stor
on PCBs, backplanes, and wring hamesses. You need the
ToneOhm 400A.
ToneOhm 400 A . just a few seconds, a unique audio tone guides the
Thand-held probe to pin- point the fault - even if it's a microscopic hand-held probe to pin- point the
whisker of solder. There's visual
confivm

Ommitestlitd. 119 Old XChurch Rd.,
Bournemouth,
Dorset BH1 IEP.

Name

To: Omnitest Ltd., 119 Old Christchurch
WW - 038 FOR FURTHER DETAIS
 Manuractured in France.
British Patents applied for

No other cleaner has all these advantages:-

1. Only 100% pure. natural diamona grans ste utilised

2. Ald dianond yspins 20.

Sole Distributors for the United Kingdom
SPEEIAL PRODUCTS (DISTRIBUTORS) LTD

 dustrial and ologtronic usera throughourt the U
WW $=075$ FOR FURTHER DETALS

a precision vice. that rotates a full 360 degrees-tilts 180 degrees from vertical to horizontal, and offers a choice of 3 bases, 3 heads, a bench clamp and a PCB holder.
We think it's like no other vice you've ever used. Its head rotates
a full 360 degrees - and tilts 180 degrees from vertical to ne conventional knob locks work in
One conventitly. You cach choose a stand ward low profile or vacuum base-a a standard, low profile or wide opening head bench clamp mounting base - a printed circuit board holder
and of course replacement jaws and pads if ever you need them. Panavise is more than just a vice - it's a system.

Greenwood Electronics

Obtainable also from our distributors.

Toorange Ltd Special Productis ing Rributors Lid
81, iccadill, London, W1

WW-073 FOR FURTHER DETAILS

 CQ-LINE

CIC SOLE DISTRIBUTOR EUROPE OFNEC
 wW-027 FOR FURTHER DETALIS

LOWE ELECTRONICS LTD.

119 CAVENDISH ROAD, MATLOCK, DERBYSHIRE CS1352 DUAL TRACE 15 MHz/2mV PORTABLE

THEBRIDGE BETWEEN MANUFACTURERS\&USERS OF MICROELECTRONICS

Now in its second great year, Microsystems is a combined conference and exhibition aimed at alerting industrialists and businessmen to the meaning of the microelectronic revolution.

Learn how to develop and use successfully the new micro-processor-based technologies. Hear a score of experts describe their design experiences and the latest Find out what new skills are needed, what costs are incurred and how to maintain and test microprocessorbased systems. loin business and persona cof small
enthusiasts, and listen to their experience and advice. Talk to over 60 leading firms who will show, in the exhibition, new products and ideas for the solution The Exhibition is free. The Conference costs $£ 55+$ VAT for eac of the first two, professional days E95 + VAT for a two-day ticket), and $7+$ VAT for the final, personal computing, day.

USE THIS COUPON TO BOOK FOR MICROSYSTEMS
 To: Microsystems, Room 821, Dorset House, Stamford Street, London, SE1 9LU.

Please send me: $\quad \square$ conference details and registration forms $\quad \square \mathrm{A}$ free exhibition ticket (Tick as required)
Name.
Name.
Address

Microsystems is sponsored by 'Computer Weekly' Processing', 'Electronics Weekly Systems International', 'Electron', nd 'Wireless World' and is organised for them by liffe Promotions Ltd, Dorset House Stamford Street, London, SE1 9LU
$\bar{W} \bar{W}$ -

LOW COST FAST DELIVERIES
Aspen Electronics Limited

$1 / 2$ watt $\begin{aligned} & \text { ATTENUATORS } \\ & \text { TERMINATIONS }\end{aligned}$ IMPEDANCE
TRANSFORMERS

For these and
many other lines Verospeed, Industrial Estate, on the Verospeed Eastleigh, Hampshire SO5 5R hotline contact
ww - 102 FOR FURTHER DETAILS

Bell\&Howell. Sets a new performance standard in motor tape drives.

System 80 is designed, developed and built by Bell \& Howell. Featuring a new dual-capstan, dual-motor tape drive,System 80 outperforms the competition: Real spectral purity and a low flutter specification are both achieved over a wide speed range. At 120i.p.s. System 80 brings you a capstan servo bandwidth of 1000 Hz , a time-base error of a mere 200 nanoseconds, and a flutter figure of only 0.80% peak-to-peak.

Backed by the worldwide network of Bell \& Howell companies and associates, System 80 is just one of the Company's comprehensive range of Datatape products for laboratory, military and industrial applications. Each one available with a wide selection of amplifiers, interfaces and ccessories.

System 80 is supported by a team of specialist Sales Engineers throughout the U.K. plus qualified Applications and Service Engineers working from well equipped laboratories at Basingstoke

For more information contact
Electronics \& Instruments Division, Bell \& Howell Limited FREEPOST, Basingstoke, RG22 4BR or telephone Basingstoke (0256) 20244.

BelleHowell

Bell \& Howell. The symbol for superior technology

IS SURPRGTNG HOMM MANM PEOPLE MAKE COMPUTERS TO FIT OUR MEDIA

The 935

HANDY•VERSATILE • TOUGH • PRECISE

HANDY - easy to hold, to carry, to use to read Always at hand to make difficult measurements easy.

VERSATILE - all the functions and ranges you need ... 29 in all: volts and amps, a.c. and d.c. switchable Hi and Lo ohms.

TOUGH - built to take the rough and tumble of field service and survive normally disasterous overloads the 935 will stay in cal.
PRECISE - basic 0.1% d.c. accuracy - better than many bench models!

SIBLE - big, clear, high contrast $31 / 2$ digit LCD display, readable anywhere. $1 / 2^{\prime \prime}$ characters. EXPANDABLE-accessories extend measurements to $1000 \mathrm{~A}, 40 \mathrm{kV}$, r.f. at 700 MHz or temperature from -60 to $+150^{\circ} \mathrm{C}$.
INEXPENSIVE - the 935 has the lowest price tag of any high performance hańd-held DMM at $£ 99$ U.K. mainland delivered exc. VAT It uses a low cost PP9 battery which can give up to 200 hours use.

Get the leaflet now
and see why your next multimeter should be a Data Precision 935!

Contact:
 Farnell International

WETHERBY-WEST YORKSHIRE LS22 4DH-TEL:093763541•TELEX 557294 FARIST G OR LONDONOFFCE-TEL:01 8647433

BIMTOOLS + BIMACCESSORIES

BIMBOARDS
 dil

 Met non slip ruber feet and have 4
terminals tor incom ing power.
BIMBOARD 1 has 55 si sockets, multiple units
 ${ }_{(0,1 \%)}^{1100,1650}$) matix.

BIMBOARD $1 £ 8.83$
BIMBOARD 2 E21.0
BMBBARD 3 £29.84
designer prototyping system DESIGNER PROTOTYPING SYSTEM
2. or 3 BIMBEOARSS mounted Don BIM 6007

 back protedition power rais bruent tuut to coal
clamps that accept striped wire or 4mm plug.

..and now No.3!

This third book in Wireless World's popular series will be welcomed by al concerned with designing, using and understanding electrcnic circuits. It comprises information previously included in the third ten sets of Wireless World's highly successful Circards - regularly published cards giving selected and tested circuits, descriptions of circuit operation, component values and ranges, circuit limitations, modifications, performance data and graphs. The book follows on from Circuit Designs Nos. 1 and 2. It is magazine size in hard cover and contains ten sets of Circards plus additional information and an explanatory introduction. Like its predecessors, it may soon be difficult to obtain, so you are advised to order your copy without delay.

Voltage to frequency converters. Amplitude modulators.
Reference Circuits.
Voltage regulators.
RC oscillators-part 1.
RC oscillators-part 2.
C.M.O.S. - part 1.
C.M.O.S. - part 2.

Analogue multipliers.
R.m.s./,log./ power law circuits.

circuit designs
 Collected Circards

PWilliams /JCarruthers/JHEvans/JKinsler

A WIrELESS WORLD PUELCATION

wireless world

General Sales Department, IPC Busincess Press Ltd. Room CP 34, Dorser House, Stamford Street, London SE1 9LU

ORDER FORM

To: General Sales Department,
IPC Business Press Limited, Room CP34. Dorset House Stamford Street, London SE1 9LU.
Please send me......copy 's of
Circuit Designs - Number $\}$ at $\{14.50$ each
inclusive. I enclose remittance value \mathcal{E}........
(cheques payable to IPC Business Press Ltd.)

ADD RESS...

30

At lust, DIV Hi Fi which looks us if it isn't.

 and now previewing the matching 6 ow/channel VMOS amplifier:

The PW Darchester-LW,mw, 5 w, , FII sterea tuner

 rand of the
and
aucio equipment

2 Gresham Raad, Brentwand,E55eK.
ww - 011 FOR FURTHER DETALS

(2)

You'll do better at Martin Associates空 we guarantee

Mâtin associates

The exciting new
TRITON Personal Computer exclusively from

TRANDAM

Visual display uses standard SFF 96364 from Thomson-CSF

Building a better computer wasn't easy-but we did it

System Expansion, using riton 8 Slot Motherboard omplete kit of parts including PCB, transformer, component parts. £50(+VAT)

8K Ram Card ($100 \times 160 \mathrm{~mm}$) for Triton, complete kit including PCB \& 1621L14. £ 97 (+VAT)

8K EPROM Card - available April' 79 . Standard Eurocard, 64 way Din Bus.

Complete kit of parts available only £286(tvar)
Basic in Rom : a powerful 2 k Tiny basic resident on board, makes
easy to use and versatile. Graphics: 64 Graphic
as full alpha numerics. Single Board: Holds up to 8 k of memory, ROM and 2k RAM ROM and $2 k$ RAM Memory Mapping: 2 mode VDU, $1 / O$ or
memory mapped for animated graphics Cassette Interface : crystal controlled Modem tape I/O with auto start/stop named" file search
UHF TV Interface: On board uhf Comes complete with keyboard, case, power supply, thro-hole plated quality P.C. B, full documentation, powerful 1 k monitor \& 2 k tiny basic plus all componenss incl. IC sockets. Communications Interface using slow speed modem at standard baud rates.
The Triton TRI single berd computer without a case, keyboard \& transformer can be used as a basic 8080 industrial board with flexible firmware specification.
Ideal for process control applications, it can be purchased for $£ \mathbf{2 3 0}$ (+VAT)

All components can be bought separately and eleven packs can be purchased on an easy-to-buy scheme. See catalogue. The P.C.B. alone is $£ 50+V A T$ plus $£ 1$ for packing and postage components.

7RANDAN

 TRANSAM COMPONENTS LTD 12 CHAPEL STREET LONDDN, NW1 TEL : 4028137 TELEX: 444198

The exciting new one page ASCII code DISPLAY INTERFACE MODULE The SF KEX 68364 A1:1 exclusively from:

Based on the industry standard SFF 96364 from Thomson-CSF

The 96364 CRT controller chip
A 1024 six bit word size (at least) static or dynamic
memory and a character generator (7×5) used with memor and a character generator 1×5 Used With

This processor periorms text tefreshment, characters
An internal top generator ensures control of any TV
 (i.e. 50 Hz 2625 lines). SF.F. 96364 B and 96364 BL
US standard compatible (ie. 60 Hz 525 lines) Line erasing, lime end erasing and other special

Available offthe shelf from Transam at competitive prices

Complete board available ex-stock only £69 (+vat)

transmits parallel data for display. The SE KEXX683364

 1-1 allows interface of a computeror The SF.KEX6836or
paralle outruito
 525 lines 60 Hz US standard).
The SF. KEX $683641-1$ is a complete 16 line by 64
characters video interface. It includes a $1 \mathrm{k} \times 6$ random access memory, a $64 \times 7 \times 5$ row scan character generitor, and an SFF.F 59364 video
processsor - in addition to the processor - in addition to the suplementary Iogic. It
acceppts data at TTL Ievels in ANSI standard ASCII, and provides a composite video outrput which can be
directily connected to any standard CRT monitor.
Power required by the SF. KEX $683641-1$ is 5 V Power required by the SFF KEX $683641-1$ is 5
approximately 350 mA . Video
(positive and synch levels. appoximaterty
(opsitive or negative) are sumitco selicectable. The small physical size ($90 \times 127 \mathrm{~mm}$) of the SF. KEX
$683641-1$, as well as its s simple power supply $683441-1$, as well as its simple power supply
requirements make it easy to buidd the video requirements make it easy to build the video
interface right into the monito or keyboard enclos SYSTEM OPERATION
The SFF.KEX $683641-1$ The SF. KEX $683641-1$ responds to a large group of
cursor contro commands. These include: Erase page and cursor home, Cursos homee, Erasestoend of of line
and cursor return, Cussor return Cursor left and cursor eteurn, Cursor return, Cursor 1 effic Cursor
right, Cursor up and Cursor down. In addition, an Erasi line function which does not affect the cursor
position is provided.
When the cursor reaches the bottom line of the display and a line feed" code is activated, the entit).
display is shited upone line (Automatic scrolling).
Additionally a
 was previously at the top of the screen, instead of a
blank tine as in Line Feed. blank line as in Line Feed
The SF. KEX $683641-1$ card is furnished with a
standard 20 in fint lat ribonon connections to and from the card may be made through his connector.
Note that the video output line is situated between number of ground leads for shielding. Only 4.5 V .
poweris required and all innut signals are power is reau
compatibe.
*Keyboard and system enclosures are aviliable
*rom Transam
PROM programming service available on DATAI/
See the 68364 demonstrated
Seected near Marble Arch in London.
loct
TRANDAM TRANSAM COMPONENTS LTD 12 CHAPEL STREET
LONDON, NW1 TEL: 4028137 TELEX: 444198

TPA SRRIED - PROVEN POWER

Only the best designs stand the test of time. The reliable power of the TPA Series D has been a consistent choice of professional audio engineers.

- $19^{\prime \prime} \times 31 / 2^{\prime \prime}$ rack mounting
- Load sensing output protection circuits
- Stable into loads of any impedance characteristic
- Available with a range of connectors and line transformers
- TPA 100 D incorporates plug-in PCB's and power transistors
- AM 8/12 fits loudspeakers enclosures for monitor purposes
- Conservative power rating 25,50 and 100W RMS. Full power at 1.5 ohms - At 8 ohms power rating of 45,80 and 170 W RMS
- Designed to operate in ambient temperatures in $-25^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}$ range

For further information please contact

VIKING WAY BAR HILL
CAMBRIDGE CB3 8 EI TEL: CRAFTS HILL (0954) 81140
TELEX: 817515 HH ELEC TELEX: 817515 HH
PROFESSIONAL = eotronie profissional

The professionals' colour pattern generator

Over 20 patterns to CCIR or RTMA standards

III-IV and V.
Electronic tuning and choice of six preset channels.

Synchronisation according to TV standard, also obtainable as

Adjustable Video, calibrated chroma/burst and variable RF amplitude.
Internal/external video and sound modulation.

Linearstaircase signal with 8 identical steps combined with definition pattern
of 5 vertical bars at 0.8-1.8-2.8-3.8 and 4.8 MHz .
his pattern generator is the finest available for precise measurement and alignment work on video equipment cluding domestic TV receivers, CR's, VTR's, VLP's, closed circuit and Service technicians, video development engineers, TV broadcast taff and lecturers will all appreciat he quality and ease of use of this compact but very versatile pattern
generator. More than 20 patterns are vailable on six channels frequencies sing instant touch-button selection. R RF, video and trigger outputs uperior to many other portable transmitted from your local TV station.

Pye Unicam Ltd

PHILIPS

Test \& Measuring
Instruments

[^0]

MCP Electronics Limited Station Wharf Alperton Wembley Middx: Telephone: 01-902 5941

AURA SOUNDS

THE WERSI SPECIALISTS
announce the opening of their

NORTHERN SHOWROOM

at 17 UPPER Charter arcade, barnsley

FOR
 (1)III二ORGANS D.I.Y. KITS LPs

Catalogues and Price Lists- $£ 1.00$ from
AURA SOUNDS
Copthorne Bank, Crawley, W. Sussex
Telephone: 0342713338

Wireless world. April 1979

Build any Project-Fast and Easy

It's the new deal for project builders from Lektrokit! A complete new range of breadboarding and testing devices. At prices anyone can afford For any project anyone could want to build- from one-chip simplicity It's fast and complexity
components in and pull them out. No soldering, no de-soldering, no chance of heat damage. You can make design changes instantly, keeping full leads on components. In fact, with Lektrokit, you can build a project as fast as you used to sketch a layout. And a lot more easily

LEKTROKIT

completes the circuit

See Lektrokit at one of the Lektrok dealers near you. There's bound to be one they're springing up everywhere. Send for colour catalogue-to:
Lektrokit Ltd., Sutton Industrial Park, Earley, Reading, Berks RG6 1 AZ
Telephone 0734669116

WW - 060 FOR FURTHER DETAILS

WW-028 FOR FURTHER DETALLS

${ }^{40}$

Revolutionary manually operated portable
High capacity production: up to $40.000 \mathrm{pcs} / \mathrm{hr}$
Low capital investment
New, fully adjustable pitch and leg length
Pitch size is transposed directly from board to machine Neat and compact size Any adjustment can be made in seconds
You can produce 20,000 cut-bends whilst You can produce others are setting-up their machines!
 ${ }^{\text {NamE }}$ ADORES

ww - 062 FOR FURTHER DETAILS

Everyone who works with electricity needs to know at some time or other what's going on inside the cable he's handling. What voltage. What current. What resistance. Not knowing the answers, or worse still having inaccurate answers, can make life difficult, even terminal. Eagle Test Equipment gives the right answers
The range covers general multimeters, high voltage probes, clamp meters, insulation testers.
Here are just four. Send the coupon for details of all the rest.

KEW 7 Multimeter 1000 OPV. DC volts up to 1000,
DC amps up to $100 \mathrm{~mA} . \mathrm{AC}$
 to 150 ohms. Pocket size.
"Off" damping. Completewith
leads \& battery. R.R.P. $£ 6.95$

EM 1200 Multimeter
100,000 OPV. Taut band 100,000 OPV. Taut band
movement. Overloga
protection Reversible protection. Reversible DC
polatity. AC amps:.15; AC
 15, DC valts to 1500.
Resistance up to 200
megon Resistance up to 200
megohms. R.R.P. 499.95
ex. VAT.

K 1400 Multimeter K1000 Multimeter
20,000 OPV. DC and AC volts
up to $5000 . \mathrm{DC}$ and AC ams 20, to 5000 . DC and AC amplts
up to 10 . Resistande up to 20 up to 10. Resistance up to 20
megohms. "Off" damping. Overload protectio
$£ 79.35$ ex. VAT.

EM10, 20 \& 30 Multimeters $10,20, \& 30,0000$ PV. All with antiparallax
mirror scale. DC volts to 1000 (1200 for mirror scale. DC volts to 1000 (1200 for
EM30) DC amps $250 \mathrm{~mA}(60$ for
EM30). AC volts to $1000(1200$ for EM 30$)$. EM30. DC amps to 250 mA (600 for
EM30) AC volts to $000(120$ for
Resistance up to 6,5 and 60 megohms Resistance up to 6.5 and 60 megohms
respectively. R.R.'.' EMMOf13.50
EM20 £17.25, EM $30 £ 20.75$ ex.VAT.

TestEquipment: EAGLE ${ }^{\text {r }}$

Please send me details of your complete range of Test Equipment.
Name
Company \qquad
Address
EAGEINTERNATIONAL Precision Centre, Heather Park orive
隹
.- - - - - - - - - - - - - - - - - - mws

Philipspresent abiased guide to cassettes.

Naturally we feel that our cassette tapes are the best. After all, we invented the Philips cassettes available from your audio dealer, and the chare now five shows which one is best suited to each cassette deck.

But don't take our word for it. Try a Philips cassette in your machine, and draw your own conclusions.

Simply years ahead

nd response.

High output. Low machines with higher bias settings.

Chromium Dioxide high frating. Im
reproduction. WW-OG7 FOR FURTHER DETAIL

A scientific computer - 1

Powerful design uses two microprocessors and BURP, a new high level language

This series of articles describe a complete scientific computer which is based on tw mini and microcomputers which rely on large and expensive memories for complex subroutines, the present desid uses a Z80 to handle the general processing and leaves the "numbe crunching" to a MM57109 contains all of the algorithms nevice to execute standard mathematical functions. The basic design uses 8 K of memory although this can be easily expanded to 32 K
The series will also describe tests and diagnoses, together with the computer's
operation, both in machine code and the high level language BURP. Games, mathematical and financial programm conclude with several options including graphics and symbolic displays, graph plotting and an e.p. r.o.m. programmer.

A COMPUTER, to quote the.dictionary is an "apparatus for making calculaexpressible in numerical or logical terms". With the advent of or logical processor it has become possible to build low cost computers but, as industry has demanded, the majority of these devices are designed with the controlling-operations aspect of comore, as numerical calculators, they are rather limited, and this has led to many disappointed owners of development kits who find their idea of microturers are poles apart To meet the needs of
a system that can do sums and com municate in a language based upon English, various versions of the language BASIC (Beginner's All-purpose
Symbolic Instruction Code, a programming language devised in 1964 by the

Americans Kemeny and Kurtz) have been produced, ranging from Intege which are limited to computer game and the like, to quite complex version. which are able to handee floating point matical and trigonometrical operation on those numbers. These operating sys ems need computers with larg memories, not for running large pro
H. 1. Block diagram of computer. Control and data buses are buffered as they leave the Z80, while buffering or the address bus is in the memory and one buffered output are available for external add-on circuitry, together with three output and five input select signals which may be used to latch

Specification

Comma	Loads program lines into m
ADD	Adds program lines to those already in memory.
DELn	Deletes program line n .
RUN n	Runs from program line n .
MOD*	Converts Print statements to Write and vice-versa. (For use with second output device.)
LISTn	Lists from program line n .
DUMP n	Lists on second output device.

Statements available
Input, Print, Write, For, Next, Goto or Go, If, Then, Gosub, Return, Top Erase, Halt, Let. teleprinter. Top clears the top line of the v.au. and sets this as the next printing Erase is similar to Top, except that the whole screen is cleared.
Halt stops execution until any key, except FS or RS is depressed.

Mathematical capability

Calculates to 8 figures plus 2 exponent digits.

Functions
,,+- square, square root, $\log , 10^{x}$. In (nat log), e^{x}, sin, cos, tan;
$\sin ^{-1}, \cos ^{-1}$
Variables $\quad 26$, denoted by A to Z .
 Print capability
Automatic switching to scientific mode on results greater than 10^{9} or
less than 10^{-4}. less than figures may be tabulated or close-packed, to any number of decimal places from 0 to 7 . Automatic rounding occurs on results abbreviated in this way
Alphanumeric data may be interposed with printed variables.

Input/output

Input via ASCII encoded keyboard
Output via v.d.u. of 32 lines, 64 char/line. Separate video and sync
signals to signals to 625 standard.
300 baud f.s.k. input/output, using tones of about 1200 Hz and 2400 Hz for the storage and retrieval of data via a tape recorder.
grams, but for storing the mass of information required to instruct the logic oriented microprocessor on how to
have as a number oriented device.
The aim of this project was to duce a computer with extended mathematical capabilities and avoid the need for such heavy investments in memory i.cs. This has been achieved by using
two processors, the 780 , two processors, the Z80 standard dominant role as the processor of data moving around the system, and the MM57109, a number-oriented processor which handles the calculations. The Z80 journals, but the MM57109 may be less familiar. This device appears to be a not entirely successful transplant of a scientific calculator chip into the world of data buses and memories. It can
perform most of the standard scientific calculator functions and, in common with many such devices, it uses a sequence for instructions known as
Reverse Polish Notation. This system Reverse Ponish Notation. This system differs considerably from the standard algebraic notation, and is based upon
the logical idea that the instructions to be performed or, in the case of a calculator, keys to be pressed, should be listed in the order which they are to be performed. For example, consider the
calculation $c=\sqrt{\left(3^{2}+4^{2}\right) \text {. The first }}$ operator following the equals sign is the last operation to be carried out and yet the last, brackets, is not the first. The actual order of execution is in fact quite complex, and the more complex the
expression to be solved, the worse things become. The algebraic sequence would actually be 3 , sq, move to memory, 4, sq, + , memory recall, $=$, line would be, LET C $=\left(3 \uparrow 2+44^{4}\right) 0.5$ where \uparrow means raised to the power of. However, a simple RP calculator would execute the operations in the
sequence which the operator would, follow, ie, 3, sq, store, 4, sq, recall, +, oot. In practice this is even simpler have a stack of registers, each capable of holding a number. In the MM57109, this stack consists of four registers called $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and T for top. Data enters pushed up into the stack bither for temporary storage, or to take part in a two number operation involving the contents of the X and Y registers (e.g. YX which calculates the Y number to the Xth power). There are specific in-
structions which move or exchange the contents of the stack registers to facilitate calculations; however, the system ensures that in normal use of the language, numbers are pushed or entnecessary. As RP is a step-by-step system, no brackets are required, and in the expression originally considered the RP BASIC version of the computer line would be
$\mathrm{LETC}=3 \mathrm{SQ} 4 \mathrm{SQ}=$ ROOT and the stack operations are given in table 1. In my view, having used both types of notation, the Reverse Polish wins every time. For this reason a new
language was formed for the computer Basic Using Reverse Polish or BURP. Hardware
The block diagram of the computer in Fig. I follows standard microcomputer techniques, with an eight wire data bus, a sixteen wire address bus and a four
wire control bus which interconnect the various elements of the computer. The majority of lines in this design are active low, ie, for an i.c. output, they go to the low state when the particular output label is occurring, e.g. HALT on the Z80.
goes low when it is in the HALT condition, WR goes low whenever the Z80 wants to write some information into
the memory. With an input, that input must go low for the input label to occur e.g. INT needs to go low for the Z80 dentified by a bar over it.
To describe the operation of the c.p.u shown in Fig. 2, it will be helpful if some aspects of microprocessor operation are toire of 158 groups of instructions, which there are about 600 in total, and these instructions are read in throug he data bus of the system as 8 -bit word or bytes. The reading in, or writing out input/output devices is controlled by the four processor output lines RD, WR MREQ̄, IORQ. For example, a low RD and a low MREQ output from the Z80 indicates that it wants to read in a byte WR and IORQ means that it is writing byte out along the data bus to an output device, such as a teleprinter. The ad dress of the memory location, which is tored in a 16 -bit register within the Z8 known as the program counter, or
code number of the input/output device, is simultaneously sent out onto second 16 -line bus by the Z80. Externa circuitry selects which memory location or device is coupled to the data bus 26 RESET, of the Z 80 is taken to 0 V , the program counter is cleared, and whe pin 26 returns to 5 V , the Z 80 begins by reading in the data byte in memory location 0, executing it as an instruc one, and reading in the next byte from memory and so on. Thus, the memor will contain lists of instructions to be executed sequentially, interspers. some of them. The $\mathbf{Z 8 0}$ will then work its way through these lists or program The instructions cover such oper tions as LOADS, which move byte
between registers within the $\mathbf{Z 8 0}$ or the tions, usually on the contents of the A register of the Z80. JUMPS, which, by feeding two new 8 -bit bytes into the
program counter register, cause the sequence of instruction execution to jump to a different point in the program And CALLS, which are similar to jumps except that the old program counter contents are kept in a last-in first-out
store in the read/write memory of the system, to be restored to the program counter on execution of the Z80 in struction RETURN. Calls are particularly useful whenever a certain block of points in a program. If the instructions are written once in a program with a return instruction at the end, the block may be called at any point during the known as subroutines.
Known as suature of most microprocessors, including the Z80, is that CALL instructions may also be forced into the instruction sequence by activating
either of the pins NMI or INT. The subroutines called by these interrupts struction in immediately after the inCALLS, once the subroutine has been completed, instruction execution recommences at the point where the These interrupts arinally interrupted. other devices that want to com municate with the Z80 and, in this case,
the NMI interrupt is inition strobe pulse from the keyboard and hence by the depression of any key. The keyboard subroutine reads in and acts upon the keyboard data before retur-
ning control to the main ning control to the main program as
shown in Fig. 3. This is just one method of using the keyboard and another common approach is the polling system where, as part of the main program, the Z80 reads in the strobe pulse as part of a byte, then tests to see if the strobe is,
active and jumps back to the read operation if it is not. When it is active, the Z 80 reads in the keyboard data byte. This method requires six bytes of in-
truction and least a three byte CAL instruction or at read-the-keyboard subroutine whenever a byte of keyboard data is required. In contrast, an interrupt driven system only requires the one-byte HALT byte of keyboard data is needed. The only method for the processor to get out of the HALT state, once the instruction has been executed, is by operation of the reset button or by an interrupt,
the Z80 waits for the interrupt the $\mathrm{Z80}$ waits for the interrupt
which directs it into the subroutine for the keyboard. The interrupt system which was chosen, saves on memory space and the subroutine contains an extra section which will reset the entire HALT state. If it is necessary to interrupt, for example, a program under development which has a fault, this can be achieved by pressing any key. The high level language where it will also stop program execution until a key is pressed.

WIRELESS WORLD APRIL 197
The NMI input (non-maskable inter jupt) operates under all conditions and memory. The other interrupt input, INT, can be enabled or disabled by instructions within the program being executed. This particular interrupt line and indicates that the 57109 wants send b.c.d. data to the Z 80 . This output can do some peculiar things during the initial reset of the processor; therefore, during this period, it is essential that the cally done by the 780 whenever it receives the reset signal. The interrupt can be programmed to respond in one of hree ways, but in this system its res onse is similar to that of the NMI input, address . adaress.
easily understood by reference to the simplified diagram in Fig. 4. The device has open drain outputs which requir external pull-down resistors, and some
non-t.t.l. compatible inputs, but these have been left out of the diagram. The 57109 has a 6 -bit input word into which 70 instructions, mostly of single bytes, have been encoded. The two relevant the HOLD input. RDY indicates that the device is ready to receive an instruction If the HOLD input is low, RDY will go low after $16 \mu \mathrm{~s}$, and the current instruction on the input lines will be
executed. If the HOLD is high, RDY remains high and the operation of the 57109 is suspended until HOLD goes low. In this system, RDY is sensed, and HOLD is controlled by the Z80. The typical sequence used by the Z80 when it wants the 57109 to execute an in struction is shown in Fig. 5.
Although this sequence is adequate for the execution of most instructions, as a separate microprocessor and will therefore sometimes produce RDY pulses during the execution of certain instructions. These pulses are intended to cue memory counters etc. As the instructions, these RDY pulses must be supressed otherwise the Z 80 may think that it's time for another instruction to be sent to the 57109 latch. Fortunately, in such cases the output ISEL at pin 12 RDY signal to, and the HOLD signals from, the $Z 80$ via IC_{7}.
The data read in by the $Z 80$ via the tri-state buffer, IC_{8}, consists of the
modified RDY signe modified RDY signal together with the carry the b.c.d. data from the 57109 X register, and the $B R$ line on pin 23. This line pulses low whenever one of the seven tests that the whenever b.c.d. data bytes are waiting to be read in by the Z80. During the execution of an OUT instruction, twelve such pulses occur which signal the two

Fig. 3. Polled and interrupt keyboard systems.

Fig. 4. Simplified diagram of the
MM57109 logic. The microprocesso also has open drain outputs which require external pull-down resistors.
the 57109 executing it

The HoLD is re-apolied. This will not stop
os a HoLD only takes effect when RDY $=$,
ig. 5. Typical sequence of $\mathbf{Z 8 0}$ the 57109

Table 1. Calculations which show the stack operations in the MM57109.

$\sqrt{3^{2}+4^{2}}$

$\frac{(6+9)}{(4-1)}$

6	6.00	0.00	0.00	0.00
9	9.00	6.00	0.00	0.00
+	15.00	0.00	0.00	0.00
4	4.00	15.00	0.00	0.00
1	1.00	4.00	15.00	0.00
1	3.00	15.00	0.00	0.00
		5.00	0.00	0.00

$\sin \left(1+\sqrt{\left(5^{3}-4\right)}\right)$

5	5.00	0.00	0.00	0.00	
3	3.00	5.00	0.00	0.00	
YX	125.00	0.00	0.00	0.00	Y to the Xth power
4	4.00	125.0	0.00	0.00	
-	121.00	0.00	0.00	0.00	
ROOT	11.00	0.00	0.00	0.00	
1	1.09	11.00	0.00	0.00	
+	12.00	0.00	0.00	0.00	
SIN	0.20791	0.00	0.00	0.00	

exponent digits, a byte representing the signs, one byte for the decimal poin signs, one byte for the decimal poin readiness to be sent to the Z80. The interrupt caused by this line has already been described.
The HOLD and POR (power on reset) lines on pins 9 and 11 respectively, are act as level shifters. Operation of POR occurs under the control of the Z80 whenever a reset is applied, and during the operation internal registers are
cleared and various conditions within the 57109 initialised. It is during this operation that the R / \bar{W} line goes low, but, as previously described, this is prevented from causing interrupts to MM57109, National Semiconductor produce a data booklet which gives full operational details of each instruction and pin function.
The clocks for the microprocessors are derived from IC_{30} and IC_{46} in the
visual display circuitry. To meet the specified swing and rise times required by the $Z 80$, a rise time of 30 ns to a level of $4.4 \mathrm{~V}, \mathrm{Tr}_{1}$ and the associated circuitry
form an active pull-up on the form an active pull-up on the output of for the 57109 is obtained from pin 12 of IC_{46}. With the link from pin 1 of IC_{46} to pin 12 of IC_{29}, the frequency of this clock is 400 kHz , which is the maximum
position of the link, to pin 14 of IC_{29},
doubles this frequ will operate at 800 kHz as have, a worthwhile increase in computing speed can be achieved.
Tri-state buffers IC_{9} to IC_{12} are connected to form an eight-line bus trol lines. These buffers also provide the extra drive required for the heavily oaded data bus. IC_{2} is a 3 to 8 -line IORQ and $\bar{W} R$. different output devices to be addressed from the codes that the lower eight bits of the address bus holds during output operations. One of these output devices is the latch $\mathrm{IC}_{4,5}$. A similar job is done by
IC_{3} for input devices, and it is enabled IC_{3} for input devices, and it is enabled
by IORQ and RD . The three input lines to these devices are different, which spreads the load on the address bus. The input devices shown are tristate buffers $\mathrm{IC}_{C_{2}}$ and IC_{13}, which buffer data from the

To be continued

Literature Received

Digital optical tachometer is described by Compact Instruments Ltd in Colour leaflea,
available from Binary House, Park Road, Barnet, Herts EN5 5SA.

Camera tubes. Plumbicon and Newvicon Camera tubes. Plumbicon and Newvicon
from Mullard are on colourful, but not very from Mulard are on colourful, but not very
informative, wall-chart which can be obtained from Department C1H, Mullard Ltd, Mullard House, Torrington Place, London
WClE 8 HD .

WW 402
A range of alphanumeric printers is subject of brochure recently sent to us by Syntest,
169 Millham Street, Marlborough, Mass. 01752, U.S.A.
wW 403
General and specific information on stepping motors is given by Moore Reed in their 50 -page catalogue, which can be had from
Moore Reed and Company Ltd, Walworth, Andover, Hants SP10 5AB.

Computer card recorders for analogue or other information are made by Houston Instrument and described in a brochure from Louis Arnold, Houston Instrument, One
Houston Square, Austin, Texas 72753, U.S.A.
WW 405

Brief descriptions of test and measuring instruments marketed by Lyons Instru ments in product guide, not sent to us but
available from LI. at Ware Road, Hoddesdon, Herts EN11 9DX WW 406
Audio test instruments produced by Ban and Olufsen shortly described in recent Gloucester GL4 7DE.

Health and safety recommendations for Bakelite materials in two publications: TIS 212 for impregnated materials; TIS B211 fo UK Ltd, Sales office, Tuition House, St George's Road, Wimbledon, London SW1

Sound reinforcement systems made by Mill-
bank, described by Royal Institute of British Architects in a product data sheet, is aval able from Millbank Electronics Group, Uck field, Sussex TN22 IPS

Company magazine of Rohde and Schwarz
for end of 1978 deals with range of r.f. tes ear and television tech range of r.f. tes description of standard stereo decoder English. Rohde und Schwarz, Poctfach 80
1469, D-8000 Munich 80 , Fed. Pep. Ger 469, D-8000 Munich 80, Fed. Rep. Germany.
WW 410
catalogue of voltage and current stabilizers is produced by Techmation Ltd. Units are niques, ferroresonance and ordinary feed niques, ferroresonance and ordinary feed-
back methods. Techmation Ltd, 58 . Edgware
Way, Edgware, Middx.

Simplified distortion measurements

Method using audio amplifier under test as a low distortion oscillator
by F. Butler, O.B.E., B.Sc., F.I.E.E., F.I.E.R.E.

The need for an external signal source is avoided by using the amplifier under test as a low distortion oscillator, coupling the output back to the input through a limiter and LC frequency selective network. The common methods of measurement and discusses possible sources of error which become important at distortion levels of about_80dB.

TO MAKE accurate measurements of the distortion products of an audiofrequency power amplifier calls for a test signal source in which the total magnitude lower than that of the equipment under test.
In Wireless World for February 1975 , In Wireless World for February 1975,
Letters, p. 68, T. Magchielse described Letters, p. 68, T. Magchielse described
one way of achieving this performance and gave a condensed account of a technique for distortion measurement. His. work inspired the present contribution which in essence describes a method of converting the amplifier tor by coupling the output back to the input through an amplitude-limiter and a frequency-selective network, thus avoiding the necessity for an external signal source. The rest or the article is common methods of distortion measuremęt, together with some discussion of possible sources of error which become imporn around -80 dB .
of course widely used in many types of audio signal generators of which a common example is the Wien bridge or parallel-T circuit. Frequency-amplitude-limiting by thermistors or filament lamps.
At first glance the Wien network seems ideal for the purpose. It is easily tunable over a wide band; it is of high
impedance, causing little loading of the maintaining amplifier and simple range-switching permits coverage from sub-audio to video frequencies.
Closer examination of the properties of the network shows it to be far from brings out its major defects. First, its selectivity is poor since its effective Q-factor is only $1 / 3$ as against figures

Fig. 1. Series-tuned LC oscillators: (a)
lamp control (b) thermistor control
between 10 and several hundreds for LC At 1 kHz centre frequency the 3 dB points lie at about 300 Hz and 3.3 kHz . Along with this the phase changes only slowly with frequency, reaching \pm quence is that a small change in amplifier phase shift, however caused calls for a relatively large frequency change to mainta h he overall loop ga There is one saving grace in that such oscillators are easily locked to an exte nal source. Against this the frequency tability is poor in the face of variable aupply ve output or in the evento amplifiers are essential
Worse is to come. The maintaining

Fig. 2. Typical notch networks: (a) paralle--T; (b) bridged-T; (c) bridged-T with centre-tapped coil; (d) bridged-T with shunt coil

(a)

(b)

Parameter at NuII	(0)	(b)	(c)	(d)
ω	$1 / R C$	$\sqrt{2 / L C}$	$\sqrt{1 / L C}$	$\sqrt{1 / 2 L C}$
$Z_{\text {in }}$	$R(1-1 /) / 2$	$2 R$	$2 R$	$R / 2$
$0-$ Factor	$1 / 4$	$2 R / \omega L$ $\omega C R$	$R / \omega L$ $\vdots \sigma$ $\omega C R$	$2 \omega L / R$ $\omega C / \omega C R$

amplifier, of gain $\times 3$, must necessarily generate some harmonic output. This is
transferred to the input through the transferred to the input through the
feedback network where it is once more amplified by this same factor 3. As already stated the network loss is $1 / 3$ a the centre frequency. At the second harmonic it has only dropped to 0.298 with a lagging phase angle of 26.57
degrees. At the third harmonic the corresponding figures are 0.249 and 41.63 degrees. In these respects the parallel-T network is even worse since its Q-factor is only $1 / 1 /$.
Clearly
Clearly some better arrangement is
required, and the solution is to use LC circuits in the feedback path. At audio frequencies such circuits are not conveniently tunable over wide ranges but several spot frequencies can easily be
selected by switched L or C Plots of distortion versus frequency or output power represent smooth monotonic functions so that checks at a few wellchosen frequencies reveal most of what one needs to know about the amplifier

LC feedback oscillators

Most audio amplifiers give an output which is in phase with the input and the overall voltage gain commonly lies betof more than 2 W output an ideal feedback network is a series-tuned LC circuit with amplitude control by means of a filament lamp, which is cheap, effective and virtually noise-free. Below
this power level, thermistor control may be preferred. The principles are shown in Figs. 1 (a) and 1 (b). At still lower output powers, field effect transistors can be used as voltage-controlled resistors.
The
The design of LC oscillators is based on the following considerations, assuming that the amplifier is of low
impedance and that its input gain control, if any, is of high impedance. First, the selectivity of the feedback network is determined by the Q of the coil when embedded in the network. At one end
the LC circuit sees a resistance equal to R_{1} and $R_{2}{ }_{2}$ in parallel. At the other, the termination is R_{3}. The actual Q of the
coil alone is $\omega L / r$ but its effective Q is in fact $\omega L / \notin r+R_{3}+R_{1} R_{2} /\left(R_{1}+R_{2}\right)$) High selectivity thus calls for the lowest possible values of R_{1}, R_{2} and R_{3} but, as shown in the appendix, these low values increase the attenuation of the network. gain near its maximum value and to choose resistors just large enough to sustain oscillation. To avoid possible damage to the amplifier, reasonable the input gain control slowly increased from zero until oscillation starts and then remains sinusoidal. Low resistor values result in the maximum possible attenuation of harmonics through
he network. This attenuation can easily be made to exceed 40 dB but, as will appear in later practical circuits, quite

Fig. 3. Practical notch network: $L=50 \mathrm{mH}$ total (air cored); $\mathrm{C}_{1}=0.5 \mu \mathrm{~F}$ plus trimmer for $\mathrm{IkHz} ; \mathrm{C}_{2}=0.005 \mu \mathrm{~F}$ plus trimmer for 10 kHz ; and $R=1200 \Omega$ to $25 \mathrm{k} \Omega$, variable with fine adjustment. large departures from optimum values
scarcely add to the inherent distortion of the power amplifier itself.
Continuing with the choice of components, the coil must be air-cored. The
use of any ferrite or ferromagnetic material will cause serious distortion due to non-linear permeability, the
effect being worsened by the resonant effect being worsened by the resonant operating frequency.
\bar{N} Next, if rectifier voltmeters are used to monitor signal levels, they must be A typical multimeter can sive is made. A typical multimeter can give as much
as 0.5 per cent t.h. distortion when connected across a 600 -ohm line. Ideally the coil should be screened to avoid pick-up from power lines or power supplies but unless it is placed in shield the effective inductance and 0 factor will be reduced, the latter quite seriously. It is probably better to place it well away from sources of interference, connecting it up by a long twisted-pair

Test procedures

In the standard t.h.d. method, a notch network or a high-pass filter, or a com the fundamental frequency. Ideally the harmonics are then measured by a wide-band amplifier of known gain and true r.m.s. voltmeter. In practice, with little error if the dist can be used low. Though useful for testing a pro duction run of amplifiers, the method has obvious limitations. To measure lown to 0.001 per cent distortion on IV signal requires 100 dB of gain tc ge blem and the method gives no clue to he composition of the harmonic spec trum. Because they combine on an .m.s. basis the voitmeter reading is

[^1]WIRELESS WORLD. APRIL 1979 work is the RC parallel-T which is a 3-terminal form of the Wiên bridge. In its passive form it suffers from all the disadvantages of the regular bridge. Inotherwise flat pass-band, the second harmonic is down about 9 dB below the zero-loss datum. The third is attenuated by about 5 dB . The results, displayed on an oscilloscope or measured by voltmeter, are meaningless. The transmismade much nearer the ideal but, by definition, this uses an amplifier of which the distortion must be much lower than that being measured, a state of affairs
quite difficult to reach because the amplifier operates under rather exacting conditions.
Passivē bridged-T LC circuits as
shown in shown in Figs. 2 (b), (c) and (d) are satisfied to work at a few spot frequencies. As before, air-cored coils must be used. Fortunately the Q is not very critical. Even if it is as low as 3, Terman, (Radio Engineers' Handbook), states
that the second harmonic is attenuated by only 0.5 dB , though calculations give a figure nearer 0.8 dB .
A few of the more important properties of the various networks are also approximations to the true values are given since the exact mathematical expressions are so cumbersome. The
worst errors are of the order of 1 per worst errors are of the order of 1 per ent. The choice of a preferred networ will be considered later.

Wave analyser methods

Wave analysers are calibrated selective volitmeters, usually working on the superheterodyne principle. In use they damental and to each harmonic of the distorted input signal. Internal or external attenuators are adjusted to give a standard reading on the output voltmeter. Distortion figures are then de settings of the attenuators. Some pos sible sources of error are:
(i) Non-linearity of the input amplifier. (ii) Intermodulation and spurious signa eneration in amplifiers, filters mixers.
(iii) Inadequate adjacent-channel selec (iv) Ground loop effects at high attenuator settings.
Such sources of error become levels around 0.001 per cent. The t.h.d of the input amplifier is seldom better
than -85 dB referred to the fundamenthan -85dB referred to the fundamen
tal. This is clearly not good enough tal. This is clearly not good enough
when attempting to measure levels at
 sorts may appear at levels between -70
and -90 dB , also causing problems. Adjacent channel responses may be as low
as -90 dB ; still not good enough for ultra-low distortion measurement. All these difficulties may be circum

WIRELESS WORLD. APRIL 1979
51

th
vented by placing a notch network ahead of the analyser and by using an isolated transformer or transformer attenuator after the notch circuit to break any possible ground loops. In measurements to be quoted later, as fixed attenuators at $0,20,40$ and 60 dB loss, their performance being checked against a $600-\mathrm{ohm}$ resistive attenuator. Here the use of magnetic is used after the fundamental has been suppressed. Any spurious product then causes only a negligible increase of an already low distortion figure. Using this technily repeatable result sim. to get exactly repeatable results down to 0.001 using wide-band low-noise amplifiers in front of the analyser

Phase-sensitive synchronou

 detectorsHere the complex signal to be analysed analogue multiplier or to a suitable balanced modulator. A square-wave switching signal is fed to the second input and tuned successively to the the test signal when the switching signal is locked to the component under investigation, sum and difference frequencles appear at the multiplier frequency (d.c.) and has an is ouro proportional to that of the test harmonic. A low-pass filter removes all unwanted a.c. components including noise. This is probably the ideal method very expensive such instruments are offered by several manufacturers. Since they use input amplifiers, p.s.ds suffer from the same defects as wave analysers so that when measuring very low se of a notch network as before

Some practical tests

For these a range of transistor amplifiers with power outputs between
50 mW and 40 W were used. In one case a quasi-complementary amplifier was built to a Mullard design for which distortion figures had been published

Fig. 4.Equipment layout for distortion measurement: amplifier under test oscillator feedback network and amplitude limiter; passive LCR notch
network with short circuiting switch unity-gain amplifier (f.e.t. input, low Z_{d} 5 V r.m.s. output a across 600Ω);
attenuator, 80 dB variable 6008 transformer attenuator $(0,20,40$ and 60 dB taps); wave analyser

Fig. 5. Typical oscillator-amplifier: 6W amplifier, $\times 40$ maximum gain; 6 V 0.3 A filament lamp; $\mathrm{C}=0.4 \mu \mathrm{~F}$ for 1 kHz and
and which could be checked agains results obtained independently. In al cases, brief tests of. .h.d were made by idea of the distortion figures to expect Wave analyser tests were then made with much more elaborate equip ment, most of which, including filters ators, audio oscillators, voltmeters and wave analysers had to be specially built because of the very high cost of pro fessional equipment.
Fig. 4 is a block diagram of the system used while Fig. 5 gives a particula oscillator with its amplitude-limiter and elective feedback network set to operate at 1 kHz or at 10 kHz by changing the capacitor.
The test procedure is as follows to give the required output power allowing for the load presented by the feedback network. Start up the oscilla tor and adjust the input to notch net
work to such a level that the amplifier is never overloaded. About 4 V acceptable in the present case. The une or trim the notch network to the scillator frequency and vary the shasing resistor until the deepest posstage by an oscilloscope connected to the point shown in Fig. 4
Switch on the wave analyser, set it to low gain and place both external atte nuators at OdB. Tune to the fundamenbest null and increase the analyser gain to give full scale deflection on the out put voltmeter. This represents the notched fundamental residue. Now tune the analyser to the second har
monic and note the corresponding out put voltage. If it exceeds f.s.d., reduce the analyser gain, leaving the externa attenuators still on OdB. We now hav to compare this harmonic level with the rue fundamental amplitude. To do so mum loss, close the short-circuitin witch across the notch circuit so that he fundamental is applied to the ana ser through attenuators only. Re-tun set the attenuators to give the sam output reading as that observed for the selected harmonic. The attenuato readings then give the amount by.which hat particular distortion level is below he third and any required Repeat for monics.
The accuracy is high because it de pends only on that of the external atte probably be good to rever 100 kHz wit unless well made, the transformer could be in error. In the present case, tw windings, each of 1000 turns, wer ound on a Mumetal core $1 / 2 \times 1 / 2$ inch cross section. The outer winding was
tapped at 1,10 and 100 turns to give 60 40 and 20 dB loss. An earthed inter winding screen of copper foil was used insulated in such a way as to preven he formation of a single-turn short cross the untapped primary and when fed from a 600 -ohm source the tapped utput on any setting was flat to around

Comparison of two amplifiers, A and B

Harmonic	2	3	4	5	6	7
A	0.022	0.033	0.0009	0.0011	0.00015	0.00025

B	0.062	0.023	0.0094	0.001	0.0052	0.001

tive in removing troublesome ground loop errors.
Some test results
A carefully compensated $\mu \mathrm{A} 709$ $\times 3$ and used with thermistor control kHz gave a t.h.d. figure of 0.002 per ent. The output was 3 V r.m.s., loaded nly by the feedback network and the notch-circuit input impedance. Its detectable on the oscilloscope. This feature characterised all the i.c. circuits ested. Next tested was a pre-amplifie built to a design by H. P. Walker but using unselected components and non3 V rim.s. output and set to a flat gaino $\times 10$ at 1 kHz this gave a figure of 0.011 per cent which would probably hav een halved if built to the origina nce the noise level was the imped recorded in any of the tests.
At the same test frequency, 1 kHz , and hen set to a gain $\times 100$, a Fairchild $\mu \mathrm{A}$ 16 gave 0.11 per cent, well within limit uoted by the manufacture at 1 kHz , are given for two amplifiers in he table above. Type A is a comple mentary Class B unit with an f.e.t. input stage, built for use as a capacitance is a modified version of a Mullar quasi-complementary 15 W design, run with a reduced supply voltage giving 7 W maximum output. Its total har monic distortion, the r.m.s. sum of the components listed in the table, agreed
exactly with figures published by the company but with an 8 -ohm load in stead of 10 ohms actually used in the present test.
Measurements at 10 kHz followed the general trend of those at 1 kHz , the
actual distortion figure being up to two or three times that at the lower frequency. In some i.c. amplifiers, heavily compensated, the 10 kHz figures
were actually lower because shunting effect of cocause of th capacitors.
As regards the choice of notch net works, the passive parallel-T may be used for wave analyser measurement away from the notch are tion losse account. To do this add 9, 5, 3.3 and 2.3 dB respectively to the measured 2 nd 3rd, 4th and 5th harmonic distortion
figures The errors involved figures. The errors involved in this are than if an active network is used, incorporating as it does an amplifier with an unknown distortion spectrum. Of the
bridged-T circuits, those shown in Figs 2 (b) and (c) are of relatively high input impedance and cause only light loading
of the amplifier under test. That shown of the amplifier under test. That shown
in Fig. 2 (d) is of low impedance at high test frequencies but is particularly suited for use at low frequencies wher large inductances are required. In thes Iso very leffective coil resistan amplifie 'is again lightly loaded. Coils up to 5 H with d.c. resistances up to 1000 -ohm have been used successfully. For quic obtained by sipping the wound bobbin off the laminated cores of redundan chokes or l.f. transformers.
Two further points may be mentioned in conclusion. First, it is simple to apply amplifier. Three-terminal crystals generating flexural mode vibrations a low frequencies may be used in the been found to work well at 5 and 15 kHz . In the second place, it is possible to use LC circuits in the parallel-resonance mode. These are particularly useful with phase-reversing power amplifiers and low-gain units provided these have a medium-to-high input impedance.

Appendix

1. Properties of the Wien network

If $n=\omega C R$,
$\frac{e}{E}=\frac{1}{3+\mathrm{j}\left(n-\frac{1}{n}\right)}$
When $\omega C R=1, e / E=1 / 3 ; \phi=$
At the second harmonic
$n=2 ; e / E=2 / 15(2-\mathrm{j})$
Attenuation $=2 / 15 \mathrm{~V}^{\prime} ; \tan \phi=-1 / 2$ Loss $=0.298$; phase angle $=26.57 \mathrm{deg}$.
At the third harmonic the corresponding figures are 0.249 and 41.63 degrees. .303 kHz with phase angles ± 45 degrees. $Q=1 / 3$.

When embedded in the network $Q_{1}=\frac{\omega L}{r+R_{3}+R_{1} R_{2} /\left(R_{1}+R_{2}\right)}$

Assuming r stays constant over an appreciable frequency range, the attenuation of any harmonic n below that of the fundamental is:
Loss $=Q_{1}(n-1 / n)$
Even with poor coils and low gain power amplifiers, harmonic attenuation below the fundamental level at the network output will seldom be less than
20 dB and may easily exceed 40 dB with good coils and high-gain amplifiers.

Acoustics conferences

The Spring Conference of the Institute The Spring Conference of the Institute of
Acoustics is to be held at the Institute of
Sound and Vibat Sound and Vibration Research, Southamp ton University, April $8-11$. There will be
sessions on psychoacoustics, sound power sessions on psychoacoustics, sound power
determination, building vibration, and sound generated by impact, as well as others or ganized by specialist groups. Contact: Pro-
essor J. B. Large, ISVR, The University, Sessor J. B. L
Forthcoming meetings include "Plannin and noise control for industrial develop ments" at County Hall, London, April 20 Acoustic test facilities and recent work on
est methods" at British Gypsum Ltd Loughborough, May 3; "Noise nuisance" a County Hall, London, May 31 ; "Source loca
tion and active control of noise", Cambridg University, June 28 -29; "Speech production modelling" at Leeds University, August 2,
"Non-linear acoustics" Bath. University September 10-11; and "Non-physical aspects of noise and noise criteria" at Portsmeoth
Polytechnic, October 5. Details from the Polytechnic, October 5. Details from the
Institute of Acoustics, 47 Belgrave Square, London SWIX 8QX (tel: 01-235 6111).

Teletext remote control

Ultrasonic link for page, time and function selection

by R. T. Russell

A number of articles on the updating and modification of the Wireless World teletext decoder have appeared since the original, pioneering, series of articles by
J. F. Daniels in 1976^{1}. A decoder which thas had these modifications carried out should have a performance which in most respects matches that of any other those using I.s.i. integrated circuits. There is, however, one facility lacking on the W.W. decoder which is provided on nearly all other
Whilst the front-panel controls of the decoder are adequate for
experimentation and demonstration purposes, they leave something to be domestic environment. A means of remote control is therefore desirable.

A NUMBER of possible ways to provide this feature present themselves. The simplest is probably to remove the and essential function switches (e.g. Clear) to a separate box, connected to the decoder by means of a multiway cable. This, however, makes a fairly bulky item; the cable is of necessity thick and something of a hazard if
trailed across the floor. In addition the capacitance of the cable could deform the fast pulses fed to the thumbwhee switches, possibly resulting in unreliable operation. Another important installation, since the decoder circuitry is connected to the live television chassis. This having been said, such a scheme is practical and probably the cheapest to implement.
remote unit can be solved by rep the the thumbwheels and other function switches by a small calculator-style keypad. The difficulty with this is that "self indicating" (ie the page number selected is displayed directly on the switches) there is no equivalent indication with a pushbutton keypad. One solution to this diuld be to incorporate a page-number cisplay int, perhaps by means of a small seven-segment display. An alternative solution, adopted in this design, is to indicate the page number as part of the venient place for it is the top left hand
corner of the page where there is a space of eight characters preceding the The problem of the heavy multiway cable can be partially overcome by multiplexing the data into a serial format, thereby allowing the use of a thin two core cable. However, this does not reduce the safety hazard which might of the insulation on a thin cable not intended for mains use.
The ideal solution to these problems is to use a cordless arrangement to eliminate the trailing lead and with price of such a solution is complexity and expense, and for those who want to avoid the cost of the ultrasonic link the rest of the circuitry to be described is two core cable. This could easily be upgraded to the cordless system at a later date.
Transmission characteristics Having decided to adopt a cordless of the transmission medium to use (e.g. ultrasound, radio signals, light) and the method of modulation to enable it to decided to use an ultrasonic link wa cause this has been the choice of most set manufacturers for their remote control systems and it does not require any sort of licence. Piezo-electric ultrasonic 40 kHz are readily available and these are used in this design.
The choice of a suitable method of modulation was more difficult. A frequently adopted method is to alloeach of the control functions provided and to use a frequency-sensitive detector in the receiver to separate the functions. In the simpler versions, the frequency generation and detection are but in the more complex systems, with large number of commands, purpose-

Fig. 1. Format of serial data. Duration of
made integrated circuits. usually carry out these functions.
Although this is a well tried and pro ven system, it has a number of disad
vantages in the present application Firstly, sixteen different functions are required for teletext remote contro alone in present case, and the number remote channel-change, etc. Althoug this number of separate frequencies possible, without using specialised i.cs the transmitter and receiver circuit would be quite complex, whether ana adopted. Secondly, the niques wer the piezoelectric type of transducer is probably insufficient for such a system, since the different frequencies canno be very close together, and this would ducers which need a large driving vol tage and d.c. polarization.
For, these reasons, the multi requency approach was rejected and an alternative system devised, whic Firstly, the control functions to ransmitted are encoded into a seria data stream of 1 s and 0 s and secondly the serial data is used to modulate the ultrasonic carrier in a binary fashion tion is simple on-off keying, with the carrier on for logic 1 and off for logic 0 Such a system was tried but was found to be sensitive to short-term reflection from walls and objects in the room whilst this problem could be partly receiver, with suitable time constants, it was found better to use frequency-shift keying instead, the signal having a contant amplitude to mask reflections. In allows the use of a high-gain limiting amplifier in the receiver, which render it insensitive to the large signal-leve fuctuations which can be experienced. bandwidths, the maximum modulation rate is limited to only a few hundred bit per second but, since this rate permits maximum of ten commands per secon (faster than one can press the keys), th than adequate. The method adopted consists of coding each command as a seven bit number, appending synchronizing bits to it and transmit
are all at logic 1 by virtue of the pull-up to R_{1}. $\mathrm{R}_{8}-\mathrm{R}_{14}$. The " 0 " key is fed only encoded as all zeroes (all ones at the shift register inputs). When any key is pressed, one or more inputs of IC_{5} are pulied to logic 0 , the NAND gate output oing to logic 1 . This signal is fed via an RC integrating network ($\mathrm{R}_{4}, \mathrm{C}_{5}$) to a and the associated resistors. The function of this circuit is to suppress the contact-bounce inherent in a mechanical switch. The positive-going ${ }^{2}$ to generate a narrow strobe pulse This pulse performs two functions: it resets the circuit to the correct initia conditions and also parallel-loads IC_{6} with the 7 -bit data present at its inputs. By virtue, pin of being reset by the strobe goes to logic 0 and turns on the crystal oscillator Tr_{1} (since the power con sumption of c.m.o.s. is a function of lock frequency, the oscillator is turned running at 4.43 MHz , clocks the high speed divider IC_{4} which is configured to divide the frequency by either 55 or 56 The signal at IC_{4} pin 1 , at about 80 kHz , signal of 800 Hz at IC IC_{1} to give a divided down to 100 Hz , which appear at IC_{2}, pin 5 , and after inversion in $(3,3)$ this signal clocks the shift-register IC_{6}, so that the seven data bits appear serially at its output pin 12 . The function
of IC , and the exclusive-OR gate $(3,10)$ of IC_{7} and the exclusive-OR gate (3,10)
is to generate the odd-parity bit and to append the start and stop bits as pre-
viously mentioned. The serial data produced at (3,10) are fed to IC_{4}, along with an inverted signal from (3,11), so that the division ratio is set to 55 for logic 0
and 56 for logic 1. This results in a square-wave at IC ${ }_{1}$, pin 3 of 40.31 kHz for logic 0 and 39.59 kHz for logic 1 . This signal drives the ultrasonic transducer

Table 1. Binary codes corresponding to the 17 keys.

Fig. 3. Output circuit if cable used in stead of ultrasound.

Fig. 4. Ultrasonic réceiver
via Tr_{2} and Tr_{3}. Shortly after the data bits have been sent IC_{2}, pin 14 goes to logic 1 , turning off the oscillator and the
ultrasonic output. ultrasonic output.
The battery used is a 9V type, which use. The transmitter will fail to operate when the battery voltage drops below that needed for IC_{4} to divide correctly at 4.43 MHz. This will depend on the par-
ticular sample of IC_{4}, but is typically 6 ticular samples.
volts.
Construction of transmitter. By using a miniature 16 -key keypad the transmitter, including the ultrasonic transducer and battery, will fit into a smail hand shown does not include the diode matrix which, in the prototype, was mounted directly on the keypad connexions. Copper alternative The transducer must able alternative. The transducer must,
of course, have an unobstructed "view" from the end of the unit normally pointing away from the user. The prototype was built into a small die-cast box with the keypad mounted on the lid"
For those wishing to use the "wired" system, $\mathrm{Tr}_{2}, \mathrm{Tr}_{3}$ and the ultrasonic transducer should be omitted and the circuit of Fig. 3 substituted. Ultrasonic receiver The circuit of the receiver is shown in
Fig. 4. The function receive the ultrasonic signal, demodulate it and feed the resulting serial data to the decoder. It is intended that it be mounted inside the tv cabinet. The ultrasonic transducer X_{1} receives feeds it to the limiting amplifier consis-
bits per second. Although only sixteen commands are implemented, the system could be expanded to a maximum of 128 the decoder. It could, for example, b used to transmit alphanumeric data at up to 10 characters per second

Data format

The serial data format is shown in Fig. 1 and is the same as that adopted for computer terminals, teleprinters and the like. In the quiescent condition, signal rests in being transmitted, the condition. When a lommand is MARK serial data begin with a logic 0 start bit followed by the seven data bits. After the last data bit, a "parity bit" is inwhich means case oda parity is used, chosen so that the total number bit is in the seven data bits plus the parity bit is always odd. This allows a measure of error detection when the signal is bit" to identify the party bit is a "stop another command is to follow, the new start bit may follow immediately after the previous stop bit, but otherwise the condition. Whilst this quiescent "stop" complex it is in fact not difficult to generate and because of its common use

Circuit of keypad and ultrasoni transmitter.
here are inexpensive integrated circuits ecode it
It is the use of this serial format which allows, if desired, the ultrasonic link to be bypassed and the serial data sent Compatibility This remong a cable. em is suitable for all versions of the Wireless World decoder and is not deendent on any or all of the previously parried modifications having been requiring no changes to the orisinal boards or inter-board wiring and there ore can be added with the minimum of disruption, although its performance may be enhanced by a small modification to the origin
be detailed later.
The remote control splits naturally into three parts; the remote pushbutton keypad unit, the ultrasonic receiver and the interface board with tions will be dealt with in turn.

Ultrasonic transmitter
The circuit of the ultrasonic ransmitter/keypad unit is shown in ig. 2. It performs the function of en the serial data signal, and from it requency-shift keyed signal to drive the ultrasonic transducer. It is battery powered and uses c.m.o.s. logic to mum: the quiescent current consump ion is so low that no on-off switch is required. The circuitry is crystal controlled and uses a standard colour ubcarrier cysta,, resulting in hig tabits.
The sixteen keys on the keypad ar each encoded into a 7 -bit binary word using the diode-matrix $D_{1}-D_{17}$ A eventeenth, spare, function may b diodes, D -D The codes generated are shown in Table 1 and it should be noted that the transmitted data is in verted with respect to the outputs of the diode matrix itself. The encoding sys number of diodes.
The seven data bits are fed to the parallel inputs of a shift-register, IC_{6}, and also to the inputs of a NAND-gate

ing of IC_{1} and IC_{2}. The natural selec tivity of the transducer is supplemented round IC IC_{1} which gives it a band-pas around IC_{1} which gives it a band-pass Because of the decoupling effect of C^{\prime} he negative feedback around IC_{2} is gnificant only at low frequencies and here is sufficient gain to give a clipped quare-wave output with a norma his 40 kHz square-wave is matched t.l. levels by Tr_{1} and buffered by NAND ate $(3,6)$.
The dividers $\mathrm{IC}_{4}, \mathrm{IC}_{5}$ and IC_{6} each onsist of separate divide-by-2 an IC_{4} pin 14 is divided by two in IC C_{4} and gain in IC_{5}. The output at IC_{5}, pin 12 is fed to the reset inputs of both IC_{4} and C_{5} so that, rather than being a 10 kHz quare wave as might be expected, it t a 20 kHz repetition rate. The duratio f the pulses corresponds to the propa ation delay from the reset to output of C_{5}, and is only 30 nanoseconds or so. Gates (3,3) and (3,11), along with the crystal oscillator running at the PAL colour subcarrier frequency, 4.43 MHz approximately. This signal is divided by 6 in IC_{4}, by 6 again in IC_{5} and by 12 in
C_{6}. This results in IC_{6}, pin 12 going high 16 cycles, or 48.7 microseconds, afte locks IC ${ }_{7}$, pin 5 to logic 0 . Six cloc pulses, or 1.4μ, later, IC_{5}, pin 11 goes to Therefore IC pin 5 is at logic 0 durin he period 48.7 to 50.1 microsecond after each reset pulse. When the fol "window" it will impe occurs in thi IC $_{7}$ pin 9 This condition corresponds to an input frequency range of approximately 40 to 41 kHz . This en compasses the logic 0 frequency of 40.3 kHz but not the logic 1 frequency of 39.6 serial data signal is present at IC_{7} pin 9 The presence of noise and interfering signals results in some spurious pulses at this point, so these are filtered out by he RC network $\mathrm{R}_{14}, \mathrm{C}_{8}$ and the data signal squared-up by $\mathrm{IC}_{8} . \mathrm{Tr}_{2}$ provides
the serial output with sufficient current drive capability to feed the decoder circuitry.
Receiver construction. The ampli-
fiers IC and IC the fiers IC, and IC ${ }_{2}$ together have
gain in excess of 80 dB , so care mus gain in excess of 80 dB , so care must
be taken with the layout of compon ents and earthing to ensure a stable system. It is recommended that the author's board layout be adopted

This board will fit inside a standard die-cast box if interference from (or to) the rest of the television circuitry is experienced, although this was not found necessary with the prototype. The five-volt supply should be taken pling so as not to introduce interfering sinals into the receiver by this route. No setting-up adjustments are required. ducer should be mounted in the front of the television cabinet in such a position as not to restrict its natural beam-width of approximately 60 degrees. Being of metal construction it should be mounted behind a protective insulating
grille to prevent it being touched. Such a grille should be chosen to have a low attenuation to ultrasound at 40 kHz . The transducer should be connected to the receiver circuit board by a short length of screened microphone cable
and should not be grounded other than via this cable.

Reference
Daniels, J. F. "Wireless World teletext decoder.
June 1976.
Printed circuit layouts can be supplied from envelop

BOOKS RECEVED

One more in the monumental series of compilations from D.A.T.A. Inc., the updated iode D.A.T.A. Book, is now available. I wo-issue series contains electrical mechanical and environmental informatio on over 50,000 types of diode, from 156 diode are covered, with supplements on US Mil specifications, outline drawings and a set of similar publications which takes the whole field of semiconductor devices. I costs $£ 48.75$ for one year - two issues - and ndon Information (Rowse Muir) Ltd In dex House, Ascot, Berks SL5 7 EU.

System Design with Microprocessors, by D. every sector of science and ind virtually recognizing the need to study and apply computers, particularly microprocessors and Zissocomputers. who has this book, Professor Science at the University of Calgary employs his non-pedagogic approach to to understand the methods by which thes newly-fashionable devices can be made to work to the best advantage. There is virtually no reference to "electronics" - the discus
sion is of logic systems only, the first chapter being an introduction to logic design, based on a previous book, which was also the inspiration for a series of articles in this
journal during 1977-8. Several chapters pro-
vide extended problems, with their solutions - in this type of book a very useful feature. References are provided, but are somewhat
repetitive and fairly limited. Academic Press repetitive and fairly limited. Academic Press
Inc. LLondon) Ltt, $24-28$ Oval Road, London Inc. (London) Ltd, $24-28$ Oval Road, L
NW1 7DX, Pp. 202 , 6 . 50 in paper back.
Understanding Hi-fi Specifications, by John Earl, is an attempt to explain the language magazines. Since the author is one of these gentlemen, he ought to be in a good position
to do this: it may be language continues to be used in consumer magazines if it is so evidently in need of ible the reviews become, the more abstruse these explanations will have to be, and one
can envisage a position where only can envisage a position where only the
review writer will know what he is talking about.
book is an honest try at clarification, but it does seem that a little more care would have been a good idea. For example, it is
unlikely that anyone who doesn't understand the expression "output level" will be greatly $200 \mathrm{nWb} / \mathrm{m}$, even though it is also spelt out (wrongly). The publishers are Fountain
Press 14 St ames Press, 14 St James Road, Watford, Herts, and
the price is $£ 2.95$ in limp back.
Radio and Television Servicing, 1977-78 Models is the latest of a very long line of
similar volumes, which are probably familiar to most servicing technicians. A representative choice of equipment is covered, each
section with a circuit diagram and servicing section with a circuit diagram and servicing
notes. The compiler has included audio sys-
ems as well as television and portable radio receivers, and any servicing information published by the makers during the year is wright edited the collection, which costs
E10.50. The publishers are Macdonald and 110.50. The publishers are Macdonald and
Jane's Publishers Ltd, Paulton House, 8 Shepherdess Walk LIandon PI ILW.

Modern Instrumentation Tape Recording is small, though densely-packed handbook in elect and apply it intelligently. It assumes n knowledge of magnetic recording, beginning recording on a tape, although the reader is "written down" to. In the second chapter, the concents of direct, f.m. and digital recording echniques are introduced and are the exceptionally clear. Tape transports and heads are then discussed in two chapters which are followed by a section on the A particularly useful chapter indicates pos sible malfunctions and their prevention or cure and a chapter is devoted to the various
standards of format and calibration that exist, with particular reference to the IRIG set of standards. Finally, a section describe some typical applications of the instrumen
The book is written by the staff of the Engineering Department of EMI Technolog Inc. It is obtainable from SE Labs (EMI) Ltd,
North Feltham North Feltham Trad
Middlesex TW 14 OTD

Digital data recording without f.s.k.

Simple interface for audio recorders uses differentiation
by Brian T. Evans, B.Sc., Ph.D., M.I.E.E., M.B.E.S
St Bartholomew's Hospital, Department of Medical Electronics

Contrary to current belief digital data ca be quite easily recorded on unmodified audio reel-to-reel or cassette tape recorders. This can be done via a simple
interface unit, and the unit described in this article ht, and the unit described in five years at St Barth use for more than London, for recording a stream of digital numbers corresponding to the inter-beat interval of patients' heart rate. In the statistically analys recorded data is some time later by replaying the audio. data tape at two or four times the initia recording speed through one of the computer's input ports.
IT IS MORE usual to record slow speed digital data onto cassette tape by the our main requirement was that the method of recording and recovering the data from tape should be independent of the tape speed. In this way data originally recorded at low speed could be convenient higher speed without the need to adjust the interface unit.
Domestic audio tape recorders are usually 'flat from about 100 Hz to wave at, for example, a repetition frequency of a few hundred hertz is first recorded onto audio tape and then examined on an oscilloscope, on replay it is seen to be considerably distorted similar distortion (differentiation) would occur if the square wave were passed through an RC high pass filter whose - 3 dB frequency was chosen to be the same as the measured overall tape point.
Experiment will show, however, that this overall record-replay low frequency roll-off varies both with tape speed and type of recorder. Let us therefore take a frequency -3 dB point higher than experienced on even poor machines. Let us take a figure of 170 Hz , equivalent to an $R C$ time constant of 1 ms .
recordings using the ourpérimental 170 Hz RC filter as the signal source it can be seen that whatever tape speed is chosen there is very little difference on replay when compared to the initial
replay the tape at higher speed there is suitable differentiated square wave will retain its shape over a wide range of tape speeds and speed-ups. A suit simple circuit is shown in Fig. 1 me next require a method of reforming the differentiated pulses to their simple as it first appears since the digital information is not really a $50: 50$ square spaces
Perhaps the best known source of serial digital data is that produced by as the example for this design Howerver any serial digital data may be recorded,
via the interface, whatever the length of marks and spaces. When no information is being trans mitted from a v.d.u. the output lin defined as the flow of current or th continuous generation of digital 'ones' It is convention to prefix each seria data word with a 'start' bit represente of either a digital 0 or the interruption eight data bits and a parity check b that can be used for later error detec tion. The next data word cannot be sent non there has been a halt in transmi sion of one or two bit lengths (the 'stop'
bits). We may take two examples first serial word all the data and parit

its are set to 0 , in the second there is a ore typical random pattern of 1 s and manual depression resulted from the thanual depress may be relatively on the v.d.u, period between successive key stroke and hence data words.
These two data word examples, both prior to and after differentiation, are that the absolute height of each diferentiated edge depends on the run of bits before it. Because of this effect it is ot possible to reshape the differen since there is no of ans of trigge since there is no means of optimally
setting the trigger level for changing bit height. The problem is exacerbated by the lack of high frequency response of he replayed tape which serves to in crease the rise time of the edges of the in Fig. 2(c). The only remainin relatively undistorted reference point is he top of each 'spike' and it is the liming of these turning points that must he original serial data reconstitut accomplish this we require a peak de tector.

Peak detector

a pulsatile waveform is applied to the nput of the conventional d applied to the as shown in Fig. 3(a), current flows in he diode only while the capacitor is Charging up to the input peak voltage current ceases and the diode charged, conducts. The same effect is produced if the diode is replaced with the basemitter junction of a transistor (Fig (b)). We may now estimate the mag
nitude of the capacitor's charging cur rent by measuring the voltage drop Fig 3(f) collector resistor as shown in once the input capacitor is fully charged. This, of course, occurs at the top of the input voltage pulse. However it is interesting to note that charging current first starts to flow at some point near the bottom of the pulse once the
magnitude of this new pulse exceeds the stored voltage remaining across the capacitor. This latter voltage is a func tion of the d.c. restorer's RC time constant and the immediate past history o voltage pulses.
One practical improvement to this circuit is the substitution of an operational amplifier and discrete diode 3(c)). (Another practical tration (Fig sion is employed in the clock frequency doubler circuit described later.) The op-amp circuit provides a constant negative-going voltage pulse during capacitor charging that can be used to improved if a small voltage bias is applied to the non-inverting op-amp input. This avoids spurious outputs when no input signals are applied. This circuit has become a standard building
block at Barts. including use as a pak detector of physiological signals such as the electrocardiogram.

Tape playback interface circuit

 In Fig. 4 the tape recorder output is fed as an inverting buffer. From there the signal follows two paths; the first direct to a peak detector, the second via an
(c)

Fig. 3. Development of peak detector: (a) conventional d.c. restorer using a diode: 'restored' output available at Y; b) base-emitter junction of transistor pulse is available at Z while C is charging; (c) improved version that gives a constant output voltage for any capacitor charging current: (d) typical input pulses at X and the discharge of capacitor charging current; (f) transistor collector output voltage at Z, related to capacitor charging current: and (g) op-amp output voltage at Z. over (f).

Typical waveforms are shown in Fig 2(c) and (d). The negative-going output of each peak detector is fed to the set and reset inputs of the bistable formed
from two cross connected Nand gates. from two cross connected Nand gates.
At first sight it would appear that the 'squared' output of this bistable is the reconstituted digital data (Fig. 5(c)). This is not quite true since set and reset are initiated at the start of diode con-
duction in the peak detectors. We need to delay the operation of the bistable to the end of the peak detector's diode conduction period so that the transistions of the digital output coincide with the peaks of the input waveform raty
than occurring indefinitely early To achieve this delay the t.t.l. co patible peak detector outputs are also summed in a 7400 Nand gate (now a Nor gate under negative logic) and inverted way the trailing edge from either peak detector, virtually coinciding with the peak of the input voltage, clocks the 7474 ' D '-type flip flop. This procedure delays the S-R bistable transitions to the output of the D flip-flop now provides the correct reconstituted data (Fig. 5 the co
(e).
In pr
In practice both Q and \bar{Q} outputs are made available via a switch as the
recording process may introduce an even or odd number of analogue inversions of the signal.

Optional clock track recording

Although two separate transmit and receive clock oscillators may be employed to feed the parallel-serial and
serial-parallel converters that are used o generate converters that are used stream, it was thought convenient to add a separate clock track to the stereo tape recorder. The availability of such a ignal permits complete freedom in the itial choice of tape speed and fina lape speed-up without the need to ad just the interface
and serial-parallel conversions wer performed in u.a.r.t. (universal synchronous receiver transmitter) chips that require a clock input at 1 tunately, since this signal is frequency divided within the chip, the mark space ratio of the clock signal is not critical. The original design specified a serial equiring a 12 kHz oscillator for thu u.a.r.t. transmitter. Experiments showed, not unexpectedly, that at the owest tape speed of $4.75 \mathrm{~cm} / \mathrm{s}$ the haduction of a 12 kHz signal was les recorded signal was replayed at 6 kHz speed up ($19 \mathrm{~cm} / \mathrm{s}$) a surprisingly clean 24 kHz sine wave was displayed on the cilloscope
So, if the transmit clock signal is there a simple method of frequency

WIRELESS WORLD. APRIL 1979

doubling on replay, preferably indepen ent of frequency? The circuit described wave input signals over a range wide input amplitude. It produces a shor output pulse on each occasion the input waveform passes through zero, viz, twice per input cycle
Clock frequency doubler
In Fig. 6 the unity gain inverting buffer verting amplifiers so that identical in of-phase tape clock signals are pre sented to a two-diode gate. The output this gate will always follow the more Fig. 7(d)). There is thus an abrupt change or turning point in the gate's output as first one then the other complementary clock signal is tracked These abrupt changes (or spikes) ar sistor peak detector. The substitution of a reverse diode in place of the conven tional resistor across the base-emitter detector to operate over a wider rang of both input voltage and frequency The inclusion of the buffer amplifier is not essential if the circuit is to be used is only introduced to about 5 kHz sort time delay of the parallel invertin mplifier path that results from th eli-known voltage slew rate limitatio of the 741 amplifier. The alternate use of rete 22 pF compensating using dispermitted trouble-free capacitors beyond 50 kHz input frequency.

Setting up

Some form of error monitoring is required, the simplest being the connec-serial-parallel digital receiver to a light emitting diode.

Data replay level

A playback output level of less than detectors and the output will remain

permanently high or low. Levels in ex cess of $8 \mathrm{~V} p-\mathrm{p}$ will experience clipping in amplifier and will thus destroy the true amplifier and will thus destroy the true
turning points of the waveform. Such clipping will markedly increase the error rate.
In practice an error trough exists for replayed signals in the range 336 V p-p
whereas outside these limits error rate
rapidly increases. It is easy to determine the edges of the trough and to set the level control midway between these limits.

Clock track option Below a similar replay level of about
1.4 V p-p the frequency doubler will not

Relativity and time signals

Dr Essen replies to his critics

MY ARTICLE "Relativity and time signals" in the October 1978 issue aroused considerable interest. As there vere too many letters to be pubished of duplication I have been invited to write a composite reply. In this I shall try to bring out the points of general interest since our
uminate the problem
The response was disappointing in my article was to The main purpose of new theories of electromagnetism which might lead to a method of exploiting cosmic energy, thus saving
civilisation from catastrophic decay. Only two correspondents referred to this aspect. Another disappointing fea ure was that little notice was taken o my description of the practical compar
ison of clocks. Writers continue to describe thought experiments in terms which have no practical significance They still use t and t^{\prime} for the times of the Ihave pointed out that four dial eadings are obtained. Einstein, in effect, used four at first by adding qualifying phrases to t and t^{\prime} and his brase in his thought the qualifying hrase in his thought experiment. He hecked most simply by reading his original paper, but there is no evidence hat this has been done. It is impossible o arrive at the truth by studying mit the sections where the errors ar made. The serious student will find it helpful to read Einstein's paper together
with my criticisms in reference 2 of the with my
article. article.
thers) I rexp to Dr Griffiths (Decembe hought experiments. Their only legitimate use is to illustrate some point of theory: they cannot possibly give contradicts the assumptions and phich dictions of the theory. Einstein has himself admitted that the result of his thought experiment contradicted his nitial assumptions (reference 3 of the Relativitists seem unable to accept the ogic of this statement. Although no further argument is necessary I have drawn attention to the precise nature of for my mist satisfaction in all onther accounts published before my critic isms. Thought experiments continue to.
convince the unwary, and several have been recommended to my attention by science fiction they may be fun but they must not be mistaken for science. The error is made by performing the experiment incorrectly. This is followed by the logical error of accepting a result in many cases by a further logical error in many cases by a further logical error
of ascribing to the thought experiment the characteristics of a real experiment. If a clock is actually made to travel in a round trip acceleration must be applied be changed in consequence. But the be changed in consequence. But the
only way the result of a thought experiment could be modified by acceleration would be to include a term giving the effect of acceleration in the
analysis. If no such term is included the result cannot be in any way influenced by accelerations.
A number of correspondents, inA number of correspondents, in-
cluding J. H. Fremlin, P. Dobbins, P. M. R. J. Sherw Mith A S. Bennett and M. R. J. Sherwood, A. S. Bennett and M.
Brown fall into this error. A. M. New states that Einstein's experiment is not a logical application of the theory. This is true and in order to draw any conclusion from it the assumption must be
made that accelerations have no effect. and this assumption is made implicitly. He accepts the result, however, and states that it can be obtained from the General Theory, just as Einstein does in far as I know, no English translation of this paper. In my view it is complete
nonsense and provides a further illustnonsense and provides a further illust-
ration of the danger of using thought ration of the
Professors Jennison and Fremlin refer ago and I am pleased universities years their willingness to debate the subject in front of their students. I welcome Jennison's partial agreement and
although he states that there is much with which he disagrees the outstanding differences could arise from the contradictions in Einstein's paper. The two specific
readily explained
readily explaine
a number of other correch is shared by whole series of transmitted pulses is received. This is true if time dilation is. the result of a change in the units of
measurement, which is one interpretation of Einstein's postulates as explained in reference 2 , and also if it is
regarded as a real physical effect as it is
in the Lorentz theory, but if it is egarded as a symmetrical effect as in Einstein's prediction, then I can find no He also questions my statement that the Doppler effect is not mentioned in the prediction but if he consults the original paper he will find that I have quoted it is not given until a later section of the paper. Einstein's definition of time which eliminates the Doppler effect was an ingenious but unnecessary device and I used it only so that I could quote
the prediction in his own words. he prediction in his own words.
The suggestion that the Doppler for-
mula could be used as the starting point mula could be used as the starting point
of the theory is an interesting and reaof the theory is an interesting and rea-
sonable one. The classical formulae
usually given distinguish betwen usually given distinguish between a moving source and moving observer,
but according to the postulate of relativity it is immaterial which is regarded as moving. The formulae must therefore be made the same, which is what Einstein does. P. D. Edgley and M Readdie also use the full Doppler for Fremli Fremin claims that he refuted my my recollection is that he ignored them and repeated Einstein's thought experi does in his present letter.
J. Blecker raises letter. J. Blecker raises an important point
when he asks why I distinguish between the Lorentz transformations and the secial theory of relativity since they are practically equivalent. My answer is that they become equivalent only after Einstein has drawn the wrong conclu
sion from his paradox thought experi ment. Lorentz offered no explanation of his time dilation assumption: Einstein tried to explain it in terms of time and space measurements. I think his expla
nation is wrong and that a true expla nation should be found.
T. Theocharis suggests that history has shown the futility of drawing attention to the mistakes in the relativity theory, but I think it is our
duty to keep on trying, especially as I do not think any previous critic has shown exactly where the mistake occurs in the hought experiment. He expresses the view that the theory will die only if and
when the aether-drift is observed when the aether-drift is observed.
Although I am in full agreement with he importance of experimert in general, in this particular case it is my view that the theory is rendered invalid by its own internal contradictions
Moreover most of the experiments that one can think of involve accelerations and cannot provide a direct check of the effect of uniform relative motion. G. Machiels recounts a story concerof sheriff - in his home town. - a kind that large sums of money and materials were being stolen and prepared a case
against the suspects. The case was not brought to court and the corruption
continued for another five years before the same suspects were charged and covered that the prosecutor had not brought his case because he had been must be mad because he had published a book "The end of the Einstein era," which criticised the relatively theory. He offers to send me a copy if I can read Flemish. Although I cannot read Flemish the language difficulty should
not prevent the interchange of scientific ideas and if he cares to send a copy I shall do my best with it.
W. Theimer has sent a book "Die W. Theimer has sent a book "Die
Relativitatstheorie" published by A. Relativitatstheorie" published by A.
Francke, A. G. Verlag, Bern 1977, which Francke, A. G. Verlag, Bern 1977, which
appears to be a comprehensive and clearly written criticism of the theory. He is trying, so far without success, to publish an English version in the UK or the USA. E. W. Silvertooth agrees that relativity is wrong and supports his
conclusion from a consideration of the Doppler equation. He refers to discrepancies obtained in satellite experiments but this is outside my field of experience and I cannot make any M. L. Michaeli
sophical discussion on logic and under standing in science. Much of what h writes is reasonable, but I do not accep his distinction between logic and commust not expect to understand relativity by using their commonsense and also that many textbook accounts are unsatisfactory. In view of his stress on the importance of logic it is strange by Einstein and relativitists in their conduct and interpretation of though xperiments.
A number of writers insist that Eins
tein's theory has tein s theory has been proved by ex
periment, but the experiments they mention involve accelerations which are not considered in the theory. It is hown in reference 2 that the so-called theory consists merely of a number of ments can only indicate which if any of hese assumptions is correct.
S. H. Rutherford asks what does Einstein mean by the expression clocks running slow. I do not know what was interpret his statements in such a way as to make sense in practical timekeeping. A short answer to some ment of time is that it consists of the counting of the number of repetitions o some periodic event. The number is recorded on a dial and the combination
of periodic event and dial is called a of periodic event and dial is called a clock. It is thus dwo.
J. de Rivas asks whether there is evidence of time jumps in caesium
clocks. I expect there is, but the
examples he quotes are probably whiches of rate of about 1 part in 10 in 10 days. This is a reasonable performance for clocks of that era. It is not a change in the frequency of the spectra line but of the mechanism for using it. confused time rientation" "a state of confused time orientation" and con-
cludes from some rather hypothetical considerations that if Einstein were right time could be made to stand still. He is relieved to find that this is unlikely to happen. R. V. Harvey supports my stimulating challenge to students. My hope is that it will also stimulate thought among our mature scientists. Finally I would like to say a word in cult it is to doubt the validity of theory which is accepted by many eminent scientists and receives the continuous public adulation from the media and from distinguished people even though
most of these are not in a position to most of these are not in a position to
judge for themselves. I had one great advantage. I knew from my practical experience of comparing clocks that Einstein's thought experiments were incorrectly carried out.

Register of research
The recent ACARD report on industrial The recent ACARD report on industrial
innovation urged the Government to stimu late firms to make more use of the research
facilities available in university den facilities available in university departments. A new way in which we can find out what
actual research is going on at the moment in such places is a register of current projects
now being published by the British Library now being published by the British Library.
Entitled "Research in British Universities,
Polytechnics and Colleges" Entitied Research in Britis, Universties,
Polytechicc and Colleges and isued in
three volumes, it contains information from three volumes, it contains information from
over 3000 departments in every university and polytechnic and a number of colleges in the UK.
Volume 1, available early in 1979, covers
the physical sciences and includes sections the physical sciences and includes sections
on electrical engineering and electronics mathematics, biophysics, materials technology, information science and other fields of
interest to electronic engineers. Te book interest to electronic engineers. The book
lists research work in progess with names lists research work in progress, with names
of investigators for each project or area,
duration of the work and duration of the work and sponjocring or area, ments are given, and there is also a name ments are given, and there is also a name
index and a detailed keyword index. The volume is available at $£ 15$ (or 30 dollars) pe copy from The British Library, Boston Spa
Wetherby, West Yorks LS23 7BQ (tel: Boston Spa (0937) 843434). The other two volumes, No. 2 on the
biological sciences biological sciences and No. 3 on the socia
sciences, will be issued later. All three will appear annually, and the whole register will
also be available later through the also be available later through the British
(BLAISE).
The ACARD report mentioned above long ignored the field of manufacturing although it could in fact make an important

Up to the time when Dr Essen wrote the
above reply the following people had sent us
letters letters in response to his Octoper hads article.
We thank them for their interest and are sorry that we have not been able to publish all the contrib
columns. Ed .
T. Barnes, Witham, Essex; A. S. Bennett, Cedford Inst. of Oceanography, Dartmouth
Canada; J. Blecker, Geneva, Switzerland; M Brown, Aberdeen; S. K. Chatterjee, St Andrews, Fife; P. Dobbins, Maiden Newton, Dorchester; W. A. Edelstein, Univ. of Aber-
deen; P. D. Edgley., Handridge, Chester; J. H. Fremlin, Univ. of Birmingham; A. Jones,
Alderney Chanel Alderney, Channel Isles; R. C. Jennison,
Univ.of Kent at Canterbury; ;. V. Harvey,
Reigate Heath Surrey G. F; Filber Poly Reigate Heath, Surrey; G. F. Filbey, Poly. of
the South Bank: D. Griffiths. Imp. Coll. of Science and Tech.; P. Hirschmann, Haifa, Israet; B. L. Kens.
Machiels, Diepenbeek, Belgium; M. L Michaelis, Mainz/Rheen, G.F.R., A. M. M. New.
Fishponds, Bristol; M. Readdie, Trinity H. Fishponds, Bristol; M. Readdie, Trinity Hall,
Univ. of Cambridge; J. de Rivaz, Porthtowan Truro, Cornwall; S. H. Rutherford, AylesCalifornia, USA; P. M. Smith, Swansea; R R. J. Sherwood, Erdington, Birmingham; T
Theocharis, Imp. Coll. of Science and Tech.
should stimulate firms without access to ments by offering incentives such as spacial tax relief, for such expenditure. It should also review and evaluate the relative merits of the
various schemes for university various schemes for university /industry
collaboration, such as Wolfson Industrial coliaboration, such as Wolfson Industrial
Units and the appointment of industrial
liaison officers the UGC might then be liaison officers; the UGC might then be
encouraged to transfer extra funds to those encouraged to tran
judged a success."

Electronics courses. Two universities are running flexibly organized courses on the
latest technology in electronics. "An in latest technology in electronics. "An intro-
duction to modern digital systems" at Leeds
University, $2-6$ April and $17-21$ September, University, 2-6 Aprii and $17-21$ September, is
broad and introductory and intended not so much for specialists as for a wide range of participants from education, the public ser-
vices and vices and general industry. The course and its
laboratory activities can be tailored to in laboratory activities can be tailored to in-
dividual needs. (Contact: Director of Special dividual needs. (Contact: Director of Special
Courses. Dept. of Adult Education and ExCourses, Dept. of Adult Education and Ex-
tramural Studies, The University, Leeds LS2
9JT). Nottingham University are offering modular course on "Modern electronics," starting in October 1979, in which participants can select those modules appro-
priate to their work interests. An M.Sc. can priate to their work interests. An M.S... can
be obtained after two years of part-time study. There are ten modules, encompassing computer hardware and software, control theory, microprocessors, signal processing, puter aided design, power electronics and information systems. (Contacti: Mr R. V.
Arnfield, Industrial and Business Liaison Office, University of Nottingham, University

CIRCUIT IDEAS

Power amplifier uses

 m.o.s.f.e.t. inputThe normal longtail pair circuit is avoided in this design which offers a
high input-impedance by using high input-impedance by using a m.o.s...e.t. ind C_{2}. The -3 dB point is set applied via the $100 \mathrm{k} \Omega$ variable resistor applied via the $100 \mathrm{k} \Omega$ variable resistor.
Quiescent current is set by the 240Ω potentiometer, and is adjusted for minimum crossover distortion.
In operation, the amplifier has proved to be very stable, and will provide up to 50W r.m.s.
A. R. van W
Coventry
Coventry

L.e.d. tuning meter Due to their low cost and availability .e.d. displays are becoming popular as eplacements for conventional meters. with a line of five 1.e.d.s, and uses a single MC3302 i.c., which contains four comparators with open-collector outputs. When off-tune, $V_{\text {in }}$ from the discomparator outputs are high, and LED $_{3}$ is illuminated. Tuning towards a station causes $V_{i n}$, to swing more positive than $V_{\text {ref }}$ which drives comparator outputs 1
and 2 low but only LED turns on As V nd 2 low but only LED $_{1}$ turns on. As $V_{\text {in }}$ turning LED $_{1}$ off and LED_{2} on. The on-tune condition turns LED_{3} on again when $V_{\text {in }}$ is within $\pm 0.25 \mathrm{~V}$ of $V_{\text {ref. }}$. Com parators 3 and 4, with LED ${ }_{4}$ and LED $V_{\text {ef }}$ therefore the display acts tike a entre-off moving-coil movement.
For correct operation, $V_{\text {ref }}$ must be round 6 V , otherwise R_{1} and R_{6} must be Itered. Also, $V_{\text {ref }}$ must have a low mpedance
required.
Haywards Heath
West Sussex

Directly coupled class \mathbf{A} headphone amplifier

In this headphone amplifier a constant current source for the drain load allows maximum gain to be achieved. The
circuitry to the right provides the necessary centre tapped supply from a single rail, and is not required if a centre tapped power supply is used.
The variable resistor is adjusted so that no current flows through the load
under no-signal conditions, Circuit values depend on the supply voltage and headphone impedance which can vary from 8Ω to $2 \mathrm{k} \Omega$
G. Nye
Reigate

Surrey

First general-purpose 1 GHz scope

Five years ago, Tektronix decided to develop a
general-purpose oscilloscope to break the general-purpose oscilloscope to break the
magic 1 GHz barrier. Although a specialized
instrument already offered a instrument already offered a 1 GHz band-
width, its vertical sensitivity of around 10 V / cm and a sweep rate of only $2 \mathrm{~ns} / \mathrm{cm}$ made it impractical for many applications. As this
performance was close to the limit using performance was close to the limit, using
conventional components, three main developments were undertaken. A new, widebandwidth c.r.t. was designed with a dis-
tributed horizontal deflection system, and a meshless scan expansion lens which expands the electron beam $41 / 2$ times vertically and 4 times horizontally, substantially reducing
the tube length. A microchannel-plate electron multiplier gives a high writing speed and enables fast transients to be photographed
with an with an average-speed camera and ordinary
film. The microchannel-plate, which is a film. The microchannel-plate, which is a
secondary emission device behind the c.r.t., also removes the problem of "blooming",
when the beam intensity is high by limiting when the beam intensity is high by limiting
the brightness just as the plate's electron he brightness just as the
amplifier becomes saturated.
To overcome the problems of high-
frequency amplification Tektronix developed frequency amplification Tektronix developed
an in-house linear i.c. process called SH (super high 3). The process combines very shallow diffusions with ion implantation to produce devices with a unity gain at $61 / G \mathrm{GHz}$.
To complement these i.cs a micro-stripline printed circuit layout was designed to accommodate each package. The third

The Tektronix
Model 704
oscilloscope Model 7104
oscilloscope see
here has the h here has the hig
sensitivity of
$10 \mathrm{~m} / \mathrm{cm}$ in real $10 \mathrm{mV} / \mathrm{cm}$ in real
time at frequencies up to 1 GHz , and the ability to
display sub display sub
nano-second single-shot events
in ambient light. in ambient light.
Inspecting the Inspecting the
oscilloscope are (left to oripht) Keith
Retallick - sales Retallick-sales
manager, Derek manager, Derek
Smith-marketing development
manager, and $E d$ development
manager, and Ed
Morrison managing director.
specialised design was the interconnection ontacts to reduce reflection elastome mismatching
The final
The fina product of this expensive deve-
lopment programme was the model 7104 which is compatible was the model 7104
tronix 7000 series of plug-in instring Tek This oscilloscope offers a rise time of 350 ps an X/Y bandwidth of 350 MHz , full sweep

riggering up to 1.5 GHz , a photographic criting speed of $20 \mathrm{~cm} / \mathrm{ns}$, and a trace which claimed to be 1,000 times brighter than
sual for one-shot events. Although the price of between $£ 11,000$ and many budgets, Tektronix feel that the deveopment spin-off and intangible benefits from
pioneering this specialized area are worth the ioneering this specialized area are worth the
ivestment.

Soviet space probes provide new information on Venus

Two Russian space probes which landed on
he surface of Venus on December 21 and 25 have provided new information about the planet's atmosphere, according to a January
issue of the journal Soviet News. They have shown that the ratio of the isotope Argon 36 to Argon 40 is from 200 to 300 times greater than on Earth. Special gas chromatographs
which were landed on the surface of the planet have also recorded the presence of carbon monoxide. Chromatographs are
usually fairly bulky instruments, but the ones usually fairly bulky instruments, but the ones
used in this experiment weighed only about used ind were known as "Sigma"" probes.
2lat and The probes were released from two
automatic interplanetary automatic interplanetary stations, Venus 11
and Venus 12, which were launched on and Venus 12 , which were launched on
September 9 and 14 respectively as part of a continuing programme investigating Venus. The equipment on the space vehicles was
developed by Soviet and French scientists. developed by Soviet and French scientists.
Although Venus 11 was launched before Venus 12 , the latter reached the vicinity of
the planet first because it was on a shoter the planet first because it was on a shorter
flight path, and its probe was released four days earlier than the other. The probes lansed about 500 miles apart and reported
atmospheric pressures 88 times greater than atmospheric pressures 88 times greater than
those on the Earth, and temperatures in the
region of 445° to $460^{\circ}{ }^{\circ}$ c, says the journal.

The information from the probes was relaye to Earth via the interplanetary stations
which continued in flight in orbits centred about the Sun. During the probes' descent taken by the chromatograph instruments and these confirmed that its main constituents were carbon dioxide and nitrogen. An earier issue of Soviet News reported
that cosmonauts Vladimir Kovalyonok and
lexander Ivanchenkov, on board the Salyu - Soyuz 31 complex, completed 100 days in
space on September 23, 1978 , beating the previous record of 96 . The cosmonauts, whose health took four to six weeks to settle
down while in space, were investigating the down while in space, were investigating the
ozone layer using a special telescope. They ozone layer using a special telescope. They
also carried out experiments related to the
form formation of semiconductor crystals in con
ditions of weightlessness

Yet another mobile radio working party

At the annual general meeting of the Mobile was agreed that the Association would se up a working party, together with the Elec he problems of channel loading within the the problems of channel loading within the
mobile radio frequency bands. Both parties mobie radio frequency bands. Both parties Office on mobile radio would cause severe area. Secretary of the MRUA, Mr Ron London, told Wireless World that what most view that a system which permitted 80% ew that a system which permitted 80%
hannel loading during busy hours was feas-
ible. The MRUA did not think that this was possible at the present time since members
had heard 70% channel loading and this had been "pretty chaotic." In due course this loading might be feasible, when users are
familiar with heavy channel loading he familiar with heavy channel loading, he said,
but to implement it fairly suddenly would be a mistake, particularly when a number of
different different types of user were a involved. The
working party would therefore working party would therefore attempt to
come up with evidence to show that 80% come up with evidence to show that 80%
channel loading was not practical at the
present time channel loading was not practical at the
present time. Mr London hoped that the
party would report its findings to the Home
Office within the next few months.

CS etter to the PMM	
On January 12, James Bryant, the president of the Citizens' Band Association, sent a letter to the Prime Minister, The Rt. Hon. Mr Jim Callaghan, pointing out the rapid growth of the illegal use of citizens' band radio in this country, and urging him to legalize highperformance v.h.f. c.b. before the pressure of illegal use compels the legislation of the	
American system in this country. The adoption of the American system would lead to a flood of Japanese equipment into this coun-	
try, while v.h.f. c.b. radios could be manufactured in Britain. "Four British manufacturers are already prepared to manufacture such sets should c.b. be	
legalized," he wrote. In his opening sentence Mr Bryant asked	
the Prime Minster to reconsider his government's opposition to the introduction of citizens' band radio in this country. Great	
Britain and Eire, he said, were the only countries left in Europe which did not allow	
private citizens some form of short range radio communication.	
Most of Mr Bryant's letter dealt with the	
main arguments which had been put forward gainst $c b$ and comments which he had to	
make on these objections. These arguments are now quite well known and many of his	
are now quite well known and many of his comments reflect what are now common	
views amongst the pro-c.b. fraternity, views that have already been discussed in Wireless	
World. However, a few of his comments are still worthy of note here.	
About the argument that the administr	
tion required to control c.b. would be pro	

Twelve hour book-reading cassette for the blind

The Foundation for Audio Research and
Services for Blind People has achieved one of Services for Blind People has achieved one of
its major objectives - the storage of 12 design to a standard compact cassette. T accomplish this they employed speciallyof four recording tracks in the mono track order $1,4,3,2$, at a tape speed of $1.2 \mathrm{~cm} / \mathrm{s}$. The nable audio books to appear on the shelves of public libraries alongside printed editions. nd be available in bookshops at comparab prices.
Mr Arthur Wilson, the honorary director of
the Foundation, the Foundation, said at a press conference in November that, apart from people with
visual and physical handicaps, there were isual and physical handicaps, there wer ake advantage of printed books but who would read audio books. Remploy Ltd, which provided employment for seriously disable equipment by which these audio books could be read. Mr Wilson concluded his speech with an appeal; first, for general support for
the project in principle, and secondly, for ne project in principle, and secondly, for
financial help to enable the project to pro ceed as quickly as possible. A sum of $£ 50,000$ equired to translate the laboratory versions
of the cassettes into prototypes, was quoted as the appeal figure in a draft of the con rence report. The Foundation's HASLAF award for 1978 was then presented to Mr
Malcolm Watford of Hemel Hempstead in Malcolm Watford of Hemel Hempstead in
ecognition of his work in designing

Conferences and

 ExhibitionsAfter two successful conferences at Mon-
rreux in 1975 and 197, the 3rd Electromag. hetic Compatibitity (E.M.C.). Symposium and Exhibition, planned for May 1 to 0 th
to be held in Rotterdam, Holland.
The 22nd Salon International des Compo-
sants Electroniques is to be held from April sants Electroniques is to be held from April It will be an exhibition of components aris. wectronic sub-assemblies, measururing instru ments, and materials and products for the lectronics industry. A conference will als be held between these dates.
Communications 80 will be held from Aprill 14
to 18,1980 at the National Exhibition Centre in Birmingham, England. With an exhibition rea of 18,000 square metres, it is expected to xposition is again bein ors is by Davies Communications. A call for papers has been made by the IEE
for the 5 th European Solid State Circuits Onference (ESSCIRC 79) which is to be hel ember 18 to 21 this year. Abstracts should be submitted by May 2. Further details from the sstitution of Electrical Engineers (IEE) don WC2R 0BL.
new exhibition for the amateur, hobbyis and small professional buyer is to be held a 30 this year. The Great British Electronics Bazaar, as it is to be called, is being organized by the Evan Steedman Communication
Group, Saffron Walden, Essex.
modifications which had already trans
formed the lives of many blind and partialy ormed the ives of many hand partially plied by the Foundation. released about the equipment so far gives ow-and-flutter figure of less th 6 kHz , despit frequency response of

Solar power has great potential in Israel

Experts in Israel say that the Dead Sea has he potential for supplying their country with
50% of its electricity needs. Already, a two-acre solar pond on the shores of the Dead Sea is providing enough energy to of a 200 room hotel being built there. The solar pond idea was conceived by Israel. Energy in the form of hot water is xsrael. Energy in the form of hot water is
extracted from the bottom of a specially layered pond without making waves, which
could disturb the build up of heat. Each layer consists of water of a different salinity. The onsists of water of a different salinity. The
hot water is then passed through heat exchangers so that the heat produced may be
used with turbines driving electrical power used with turbines driving electrical powe
generators or directly for air conditioning or her systems.
that modern silicon- Mr Bryant made the point not only possible but simple to fit every c.b.
set sold, at the factory, with a unique identifying signal which could not be tampered
with without the resources of a microelectronics factory and without which the c.b. set
would not transmit. The extra cost of this advice would be under 50p, he said, and it
would reduce the adminitrative costs c.b. service to a low level, and also increase c.b. service to a
the impracticality of criminal or anti-social In the letter Mr Bryant claimed that there were many MHz of available frequency
spectrum in the v.h.f and uh.f. regions spectrum in the V.h.f. and u.h.f. regions
which, though allocated were unused. The
220 to 240 MHz range, for example, had un220 ored sectors - some never used since 1944 .
use There was also space around 900 MHz , and
possible space in the near future where the possible space in the near future where the
v.h.f. tv channels are now. Very little spect.h.f. tv channels are now. according to Mr
trum was needed for c.b.;
Bryant 0.5 to 1 MHz would be ample and even 200 kHz could provide a reasonable service. He believed that, given politic
spectrum space could be found.
Mr rryant stressed that the American
27 MHz a.m. standard, as used in most of the 27 MHz a.m. standard, as used in most of the
countries having c.t., was unsuitable for a countries having c.t., was unsuitable for a
small, densely-populated country like
Britain, and he reminded the Prime Minister Britain, and he reminded the Prime Minister
that the NEC, BREMA and the EEA were all that the NEC, B
agreed on this.
In describing the present seriousness of
illegal c.b. in Britain Mr Bryant said that the illegal c.b. in Britain Mr Bryant said that the
Citizens' Band Association had estimated Citizens' Band Association had estul
that there were now about 15,000 illegal users
in this country and that their number was growis country and that their numbut 100 every month. If the
growth in illegal operators continued the growth in illegal operators continued the
Government would be forced, as happened in
Austalia to legalize what was already being Australia, to legalize what was already being
done. There would then be no possibility of

It is now necessary to investigate in more detail the imperfections and sources of error in ramp generators. The discharge part of the cycle is left till later, and the results obtained are equally applicable to triangular wave and sawtooth generators, as to the generation of any waveform

having a nominally linear region. The first step is to apply the circuit theorem to the input section | comprising the voitage generator in series with a resistor. This is identically equivalent to a curren |
| :--- |
| generator in paralle with |
| V / B This allows of a different | interpretation of the effect of finite voltage gain. The higher that gain, the lower the voltage appearing across the equivalent parallel resistor, and hence the smaller the error current. As the

voltage gain becomes infinite so the error current in the equivalent resistor reduces to zero and the voltage gain becomes infinite so the error current in the equivalent resistor reduces to zero and the
circuit behaves as if the current generator were perfect. The circuit only functions correctly for an inverting amplifier - if non-inverting, the regenerative feedback through the capacitor leads to oscillation

It is simpler and also more practical to consider the effects of finite voltage and current gain separately. At least for first-order terms the effects are additive, while in important practical cases only one error at a time is significant. For finite voltage gains the Blumlein/Miller effect provides a good way of evaluating the error. An impedance Z placed across an amplifier of gain A_{w} results in a current flow at the input equivilen to an ped col $\left|A_{i}\right|>\infty$ as in the case assumed here). This places a capacitance of $\mathrm{C}\left(1-\mathrm{A}_{\mathrm{V}}\right)$ in parallel with R at the input showing the new time-constant to be $\left(1-A_{v}\right) \tau$; with A_{v} negative and $\left\langle A_{v}\right\rangle$ very large the time . The resistor across the input is replaced by one across the feedback capacitor to even more useful. The resistor across the input is replaced by one across the feedback capacitor to
provide the same input current. Its value is found to be $\mathrm{R}\left(1-\mathrm{A}_{v}\right)$, and the final effect is that of a very high value of leakage resistance: the charging current still depends on R, while the current error high value of teakege resist.
corresponds to $R(1-A)>$.

The advantage of the previous interpretation becomes clearer when the errors due to finite current-gain are investigated. In this case we assume an infinite voltage gain so that only one error at a time is under investigation. Hence there is zero voltage drop across he amplier lines,
ferminals and in the Norton equivalent form the generator shunt-resistance, shown in broken lines, introduces no error. The load resistance draws a current that results in a proportional current flow into the amplifier input terminals. This current increases linearly with the output voltages and has is found to be $-A R_{L}$ where A, is negative, and $|A|>1$ is the ideal condition: Again this allows the resistance determining the error in the slope to be large while the load resistance is small. This form of error is dominant in single--ransistor ramp-generators, widely used for simple time-base cir

One particular form is considered first to show the application of the theory introduced above Two other forms, also well-known, are then shown to be of the same family corresponding to a simple shift in ground-point. A capacitor is placed between base and collector of a bipolar transistor assumed to have $\mathrm{V}_{\mathrm{BE}}=$ constant corresponding to a high voltage gain, and this may be further simplified to $\mathrm{V}_{\mathrm{BE}} \mathrm{V}_{\mathrm{BE}}$ since typically $\mathrm{V}_{\mathrm{S}} \gg \mathrm{V}_{\mathrm{BE}}$. The current in R_{B} is fixed and the majority of it charges The capacitor with a small portion flowing in the transistor base to sustain the required output. across R_{C} is zero and when the short is removed $1_{\mathrm{B}} \rightarrow 0$. The inverting gain results in a negative-going ramp, increasing the voltage across R_{c} and the collector and base currents. Thus
while the change in output voltage produces a change in slope attributable to a shunt resistance while the change in output voltage produces a change in slope attributable to a shunt resistance $\mathrm{h}_{\mathrm{fE}} \mathrm{R}_{\mathrm{C}}\left(\right.$ where $\left.\mathrm{h}_{\mathrm{FE}}=-\mathrm{A}, \mathrm{A}\right)$ a voltage
for $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{S}} \mathrm{V}_{\mathrm{gC}}=0$ and vice-versa.

Three apparently different ramp generators appear in the technical literature: the Blumlein but form a closed family with all essential points in common. The active device has three terminals any one of which may be grounded. In one mode (grounded emitter, source, cathode) the stage
inverts and the magnitudes of both voltage and current gain are >1. In the second mode inverts and the magnitudes of both voltage and current gain are >1. In the second mode
(grounded base, gate, grid) the stage is non-inverting with approximately unity current gain. In the grounded base, gate, grid) the stage is non-inverting with approximatily uny
third mode (grounded collector, drain, anodel the stage is non-inverting with approximately unity voltage gain. The capacitor is placed between base and collector or the equivalent locations for
f.e.ts and valves, with a resistor and voltage bias in series between base and emitter. The bias f.e.t.s and valves, with a resistor and voltage bias in series between base and emitter. The bias
voltage may be provided directly by the supply, by a separate but grounded bias voltage or by a
and constant current to flow in a capacitor generating a linear ramp

THEORY

The voltage generator can be replaced by the current generator provided each provides the same open-circuit voltage and sh
the current generator have a resistor R in parallel.
$V / R=1$ shor-circuit curren
$V=R^{\prime}$ open-circuit cur
Result holds for $R^{\prime}=R$
The Blumlein-Miller effect postulates the replacement of a feedback impedance by input and output terminating impedances that draw the same currents from source and output as does the feedback impedance output can be ignored: with a high-gain amplifier it is almost equal to the fedback impedance while the output impedance is low. Similarly an appropriate value.
$i=v / r$
$\left.\begin{array}{rl}i^{\prime} & =v / v \\ \text { For } & =\left(v-A_{v} v\right) R^{\prime} \\ & =i^{\prime} \\ R^{\prime} & =v(1-A,\end{array}\right) / R^{\prime}$
$V / R=v\left(1-A_{A}\right) / R^{\prime}$
$R^{\prime}=\left(1-A_{v}\right) R$
For A_{v} large and negative
$R_{1} \gg R$ and the time constant is
$\tau^{\prime}=R C\left(1-A_{2}\right)=(1-A) \tau$
$\tau=\left|\mathrm{A}_{v}\right| \tau$
This is identical with the value obtained by the usual Blumlein-Miller calculation where C is replaced by $C\left(1-A_{v}\right)$ across the input.
To complete the equivalence the current flowing in the notional feed back equal and opposite current. In the high-gain case the voltage is large and equar and opposite current. In the enigh-gain case he vire
the resistance correspondingly so. For op-amp circuits the loading effect is regligible and only input/feedtack equivalence need be observed.

For $\mid A, \rightarrow \infty$ the input voltage $\rightarrow 0$, a true virtual earth that prevents the
Source resistance from contributing to the non-linearity. The current gain is A_{i} and is negative for negative feedback.
Load current V_{0} / R_{L}
Input current $\frac{V_{0}}{A_{i} R_{t}}$
Replace R_{L} by resistor R^{\prime} between input and output. This resistor is to divert the same current away from the capacitor as did the amplifier input, the gain of the amplifier now being considered infinite.
Current in $\mathrm{R}^{\prime}=-\frac{\mathrm{V}_{0}}{\mathrm{R}^{\prime}}$
$\frac{V_{0}}{A_{1} R_{L}}=-\frac{V_{0}}{R^{\prime}}$
and $R^{\prime} \rightarrow \infty$ for A_{i} large and negative

For $V_{B E} \rightarrow 0$, charging current is V_{s} / R_{B}
nitial conditions $\mathrm{V}_{\mathrm{c}}=\mathrm{V}_{\text {s }}$
$\begin{aligned} \text { and } \mathrm{I}_{\mathrm{Rc}} & =0 \\ \mathrm{~h}_{\mathrm{B}} & =0 \\ \mathrm{~h}_{\mathrm{ft}} & =\mathrm{A}_{\mathrm{i}}\end{aligned}$
Error current $=\frac{\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{c}}}{\mathrm{h}_{\mathrm{FE}} \mathrm{R}_{\mathrm{c}}}$
This current has an initial value of zero ($V_{s}=V_{c}$) and a maximum value of
$\frac{V_{s}}{h_{E E} R_{c}}$ for $V_{c}=0$

EXAMPLES

1. An amplifier has a voltage gain of -500 and negligible input current. It is used as a ramp enerator with a 10 nF feedback capacitor. The drive current is obtained from a 10 V source through a $10 \mathrm{k} \Omega$ resistor. What is slope from beginning to end of the ramp
Input current ≈ 1 mA

$$
\begin{aligned}
& \frac{\Delta v_{c}}{\Delta t}=\frac{10^{-3}}{10^{-8}} \\
& \Delta t=\frac{20.10^{-8}}{10^{-3}}=2 \cdot 10^{-4} \mathrm{~s} \\
& \Delta t \approx 200 \mu \mathrm{~s}
\end{aligned}
$$

Circuit is equivalent to perfect current generator but with resistor
$10 \mathrm{~K} \Omega[1-(-500)$ in parallel with capacitor $\approx 5 \mathrm{M} \Omega$.
\therefore With $V 20 \mathrm{~V}, 1 \approx 4 \mu \mathrm{~A}$. Thus the charging 4 is $(1-0.004) \mathrm{mA}$. But $\mathrm{dV}_{\mathrm{c}} / \mathrm{dt} \propto \mathrm{l}_{\mathrm{c}} \mathrm{i}$. . the slope is reduced by four parts in a 1000 or 0.4%

Repeat the previous question using the Blumlein-Miller effect to replace efeedback capacitor by an equivalent capacitor across the input. The results can be obtained by expanding the exponential term.
$V_{0}=A V$
$V=V_{1}(1-\exp -t / \tau)$
$V_{0}=-500.10 .(1-\exp -t / \tau)$
$\frac{d V_{0}}{d t}=\frac{-5000}{\tau} \cdot \exp -t / \tau$
$\tau \approx 10^{4} \cdot 10^{-8}[1-(-500)]$
$\approx 5.10^{-2} \mathrm{~s}$
For $\Delta V_{0}=20 \mathrm{~V}$ and the relatively high gain, $\Delta \mathrm{V}$ is small compared with V i.e. $t \ll \tau$
exp $-t / \tau \approx 1-t / \tau$
$\frac{d V_{0}}{d} \approx \frac{-5000}{\tau}(1-t / \tau)$ and $V_{0} \approx 5000 t$
e. the fractional change in slope is
$\approx \frac{t}{\tau}=\frac{20}{5000}=0.4 \%$
3. An amplifier having $\left|A_{i}\right| \rightarrow \infty$ and $A_{i}=-100$ feeds a $5 \mathrm{~K} \Omega$ load. The feedback capacitance is $1 \mu \mathrm{~F}$ and the input is an e.m.f. of 5 V in series with $1 \mathrm{k} \Omega$. Determine (i) the initial slope of the output waveform (ii) the $\%$
The initial slope $\frac{d V_{0}}{d t}=\frac{-d V_{c}}{d t}=-\frac{1}{C}$

$$
=\frac{-5 \cdot 10^{-3}}{10^{-6}}=-5,000 \mathrm{~V} / \mathrm{s}
$$

When the output is -10 V load current is -2 mA
input current is $\approx \frac{-2.10^{-3}}{A_{i}}=\frac{-2.10^{-3}}{-100^{-3}}=20 \mu \mathrm{~A}$
On removing load, the slope changes in proportion to the current i.e. \approx On removing load, the
$20 \mu \mathrm{~A}$
5 mA or 0.4%.
Alternatively take the load resistor as equivalent to a resistor of value R_{c} reducing the charging current and hence the magnitude of the slopeby
0.4%

Low-cost logic analyser - 2

Construction and application

THE LOGIC ANALYSER may be built into any suitable instrument case, pref erably with a tilt-up stand as shown in the photograph, the prototype incorremovable chassis for ease of servicing The circuitry was wired on stripboard using self-fluxing, insulated copper wire, and the l.e.ds were mounted on O. in pitchVeroboard about $1 /$ in clear of the board. By drilling $\quad 3 / 6$ in diameter
holes in the front panel with the same pitch as the l.e.di.s, the display can be mounted behind the panel without the need for individual l.e.d. mounting clips and wiring. The display matrix for the
sample channel can also be mounted on Veroboard and supported behind a rectangular slot, cut in the front panel and covered with a tinted plastic screen.
The data inputs use 2 mm connectors mounted directly beneath each respective indicator, and an extra socket is
used for the 0 V connection. Trigger input, sample channel and external input use BNC sockets, which allow the leads and screen interference signals. Slide switches are used for the selection of positive or negative waveform edges and the external input, and miniature thumbwheel switches preset the
hexadecimal comparator and delay sec-
tions. The threshold control poten
tiometer should be linear to within $\pm 5 \%$ so that approximate calibration via the front panel can be achieved. comparang between input sockets channel sections should be as short as possible, and the trigger input should be connected to the D type latch via
coaxial cable coaxial cable
The power
uses regulator i.cs to give +5 V at 2 A , +12 V at 200 mA , and -5 V at 100 mA . Supply leads to the comparators
must be as short as possible to reduce must be as short as possible to reduce
unwanted inductances which can cause the comparators to oscillate. Leads should also be decoupled with 0.1μ F low voltage ceramic capacitors between the +12 V to 0 V to -5 V rails for each comparator, and a $10 \mu \mathrm{~F} 35 \mathrm{~V}$ tantalum The t.t.l. supply must also be decoupled with one ceramic $0.1 \mu \mathrm{~F}$ capacitor every three packages.

Applications

The following section describes some typical applications for the logic analyser. Unless a storage oscilloscope is available it is very difficult to view a
one-shot event or series of events. sample channel can of events. The signals if data information rather than
signal parameters such as rise time are needed. To detect and store a single pulse, the sample channel is linked with the external trigger input and conthreshold and sample channel threshold are set for the logic family in use, and trigger edge setting is made, dependent on whether the input signal is normally low or high and whether the trigger
delay is being used. Typical waveforms that can be stored are shown in Fig. 9 . After the correct edge of the input pulse has occurred, the trigger inhibits the sample channel and the pulse is dis-
played: By using the delay mode the played. By using the delay mode, the
display will also store the state of the input signal after the trigger signal has occurred. The period of the pulse may be calculated by counting the number of sample clock periods that have
switched the input. Each l.e.d. position represents the input logic state at the time of one sample clock edge: therefore, if the pulse is shown high for 22 l.e.d. positions and low for the remaining 10, the pulse period is 22
times the sample clock period. It should be noted that there can be an error of ± 1 sample clock period on each displayed transition of the input signal, and pulses of a shorter duration than the sample clock period may be missed.
It is often necessary to design inter
 the approximate period of any contact bounce may be required and this can be measured by connecting the contact to the logic analyser, and using the sample By using the delay mode, the display will show the bounce signal'after the initial trigger edge has been received. The sample channel can also be used to display serial data from synchronous or asytput clock of a teleprinter as the sample clock of the analyser, ASCII codes can be stored and displayed.
If the data latch inputs and sample channels are used as shown in Fig 10 serial to parallel converters can be eas
ily checked. checked.
Often, in logic systems; faults cannot
be detected by a single step process be detected by a single step process
because they are caused by the dynamics of the systems, e.g. decoding a delay in a counter which causes an in correct count. In such cases a sampling
technique is necessary, but it can be difficult to ascertain the state of a number of signal points at a predetermined time. However, the data latch allows the sampling of signal points
Thodota lotah

The data latch can also be used whe The data latch can also be used when
function checking data buses, i.c. outputs, b.c.d. decoders, counters and memories. The delay mode adds to the flexibility of the analyser by enabling the latch to sample data at a preset time
after the arrival of a trigger signal. For example, if it is necessary to check the contents of a counter after it has received a number of count pulses, the counter outputs are connected to the to the external clock input and trigger input, and the delay mode is selected for the number of pulses required. When the count starts, the analyser will trigger and wait the preset number of pulses before inhibiting the data input the count value stored after the preset number of pulses as shown in Fig. 11 A similar system can be used for checking memory contents against the number of write pulses received by the comparator can be used to detect false codes produced by the memory, and the sample channel can record the state of a memory control line
The problem of detecting and evaluating random or intermittent faults in a difficult one. This is especially true in complex systems such as microprocessors, where a large number of logic codes are produce. In such cases the the logic system, and set to detect a predetermined fault. An indicator is provided, which flashes when the anayser receives a trigger signal caused by the occurrence of the fault. The da the time of this fault is also stored.

*Mounted on $2^{\circ} \mathrm{C} / \mathrm{w}$ neatsink
Fig. 8. Power supply

Fig. 9. Typical sample channel displays

Conclusion
Since I built the analyser it has more
than repaid the initial inver than repaid the initial investment, and diagnostic problems than I had intended. Using the equipment has also given me some ideas for improving its performance. One suggestion is the
replacement of the clock oscillator by a replacement of the clock oscillator by a
more accurate crystal type. It must be more accurate crystal type. It must be
remembered, however, that the sample channel always has a possible error of one clock period on every stored transition, and the delay counter can be
one clock period out at the end of its one clock period out at the end of its sample channel could be replaced by a single row of indicators, and the number of sample channels increased, each with its own trigger-control selection to pro-
vide signal or data phase relationships. vide signal or data phase relationships. aneous storage of triggered and delay triggered waveforms. The data latch section could be expanded so that it stores, for example, 16 bytes clocked
into the store by a separate input. It into the store by a separate input. It bytes at the same time, but each byte could be selected for display. This facility would be useful for verifying
truth tables or recording blocks of truth tables or recording blocks of

Fig. 11. Using the analyser to verify a counter's operation.

Digital data recording without f.s.k.

continued from page 59
work at all. Any signal above this minimum will operate the doubler even if severely clipped in the preceding.
buffers/inverters. However, for reliable high frequency operation it is best to within their linear region.

Error rate

Errors are caused by imperfections (drop-outs) in the recording tape. If the than the bit duration then errors will occur. If the drop-out is appreciably shorter than this the system.will only be prone to error if the drop-out occurs in the interval be
and its peak.
Tape drop-outs that occur between the peak of one pulse and the onset of the next are of no concern. Drop-outs that occur in the rising pulse interval may either advance or delay the true
transition time and may or may not result in a received error
In practice it was found that a recorded data rate of 750 bits/s produced 15 to 20 bit errors per 1800 ft ree ding was made at $4.75 \mathrm{~cm} / \mathrm{s}$ and the errors determined at a four-times speed
up ($19 \mathrm{~cm} / \mathrm{s}$) on a Sony stereo tape ecorder (model TC252). It was reassuring to see that using the clock

2VO-P

$\mathrm{sv}^{\mathrm{sv}} \stackrel{(\mathrm{e})}{\square \square \square \square \square}$

Fig. 7. Waveforms in frequency doubler of Fig. 6: (a) original 6 kHz square wave clock signal; (b) typical playback signal
fed to upper diode; (c) inverted ed to upper diode; (c) inverted
playback signal fed to lower diode diode gate output; and (e) collector output.
eliberate slowing of the playbac peed by injudicious finger pressure on the tape supply reel.
Expressed more conventionalily, error rate was about 1 in 5×10^{5} recorded
bits. The total storage capacity of a single track of an 1800 ft reel is about
750 K 8 -bit bytes in which each byte is assumed to be formatted with start, stop and parity error bits.
Errors can be dealt with in two ways: (1) The played back information in error may be monitored by means of a separate playback head as recording is, taking place. If an error is detected the last block of information can be
In the Barts heartbeat interval data ogging system it was thought that the occasional loss of a data word could be he statistical results. The receiving computer's software notes that an individual word is in error and deletes
However, if it is essential to ensure However, if it is essential to ensure
that each and every data word is correct then it would be necessary to adopt the second, more complicated, approach. \square

WIRELESS WORLD. APRIL 1979 7

AN OVERSIGHT
IN COSMOLOGY
I asi you to accept a priorit two things. that
the red shift can be explaine in the system to he red shift can be explained in the system to
be roposed and that the frequency spectrum of right is quantized; there is some ex.
of perimental evidence as to the ilitter.f if il ight is
quantized in this way then there is $a l i m i t e d$ quantized in this way then there is a
number of frequencies in any electromagnetic spectrum.
ion concerns Oblens's paradox which is said, by some, to mark the origin of sky dark at night? He had already shown by good reasoning that is should not be dark at
all. Mathematically' the sky could be all. Mathematically the sky could be
represented as a continuous shell of incandescent matter whose temperature, as near as makes no odds, was that of the sun. Ergo
the Earth would soon be as hot as the sun. The obvious contradiction stood unanswered for about a century and a half. The astronomer Hubble observed the red
shift, which cosmologists then combined shift, which cosmologists then combined
with the Doppler effect and drew the neat conclusion that the sky is dark at night because the universe is expanding!
I suggest that this particular I suggest that this particular piece of there had been an oversight which indeed persists to this day. The law of averages has
been disregarded. It can be shown that the size of Oblens's sphere is at least 10^{20} light years in radius. On a sphere of such size there will be a near infinite number of point
sources of radiation in any small solid angle sources of radiation in any small soifa angle
of the sphere that is observed. Practicaly, the
solid angle is determined by the limits of the solid angle is determined by the limits of the
observing instrument.
It follows, dare I say as night follows day (?), that an observer will see none of the light. Due to the law of averages the radiation will
arrive in balanced phase/ antiphase relationship at the detector and, even though there is
about $5 \times 10^{4} \mathrm{~kW} /$ metre 2 at the Earth's surface, it will be neither seen nor felt. My question is: Has there or has there not
been an oversight in this problem? If there has then the universe is not expanding and certain readjustme our concepts are
long overdu. Alex Jones
Alex Jone
Swanage
Dorset

COMPUTER BUSES lan Witten's article on computer buses
(February issue) is right to point out certain key factors when designing a bus system. For example, t.t.l. totem pole gates cannot be
connected together in a wired AND function for the precise reasons he states. Then he discusses two alternatives, tri-
state and open collector. He dismisses the state and open collector. He dismisses the
latter because of alleged slow diss is true. Any switching edge which appears slow is due to the quality of the interconnection, it is not an inherent property or the transistor
circuit. I have achieved switching ppeds of about $6-8 \mathrm{~ns}$, with the positive edge being slightly faster than the negative. Additionally, crosstalk calculations need to take into
account the transmitting element the account the transmitting element, the
receiving element and the interconnections. element, the receiving element and the in-
terconections $\stackrel{\text { terconnections. }}{\text { The possibilit }}$
The possibility of excessive current as
shown in the totem pole configuration also
applies to tri-state if two enables happen to be true at the same time.
For a comprehensive explanation of open
'collector bus driving f Wireless World, p. 61. M. F. Davidson
CAM Consultants

CAM Con
St Albans
Herts
The duthor replies:
Malcolm Davidson raises the interesting
question, to what extent should a bus be treated as a transmission line? If really high switching speeds are required, then of course
the transmission line approach is mandatory the transmission line approach is mandatory,
and if the line is properly terminated at both ends, open-collector gates can indeed be fast.
However, one great attraction of a bus struc. However, one great attraction of a bus struc-
ture for interconnection of computer sub systems is the flexibility it offers for reconfiguration by inserting or removing modules, or extending the bus without adverse effec
on the rest of the system - and this rules out the possibility of exactly matched termination. Fortunately, most commercial microcomputers are slow enough to allow one to
get away with this! Under conditions of incorrect line termination tri-state device give more robust and reliable performance he is quite right to point out that two Hri-state qates driving the same bus line should not be enabled at the same time. This means that some lines cannot be tri-state
driven. The "bus request" signal illustrates this - one cannot guarantee that bus requests will not occur simultaneously. In prac tice, computer buses usually have som
tri-state and some open-collector lines, tri tri-state being used when the nrotocol guaranees that no two devices can simultaneously drive the line. This means, of course, th failure of a device to observe the protoco
may result not only in logical breakdown of communication along the bus, but in physical
breakdown as well - due to multiphe gates breakdown as well - due to multiple gates
driving the line. As Mr Davidson notes in the article he cites, this is a considerable disadvantage of tri-state driving Ian H. Witten

MILITARY ELECTRONICS

Many readers of Wireless World will have paused to think about the issues raised in the
January leader, "The death delivery busi ess". Some may have wondered how they production for military use, or how to breal the vicious circle of ""rganic intercourse" between electronics firms and the military
Obviously there are no easy answers, but here are sources of information and suppor or people who would like to consider thes The Campaign Against Arms Trade was set up by several peace and internationalist groups in 1974, to work for an end to British
involvement in the arms trade and for the conversion of British military industry to peaceful, socially useful production. It dis
tributes a wide range of books tributes a wide range of books and pam
phlets, and has produced a wide range of phlets, and has produced a wide range of
factsheets, leaflets, and campaigning materials. It is is inclose touch with shop
stewards and others who are putting stewards and others who are putting forwar
alternatives to military production in their alternatives to military production in their
companies, and with individuals who have
hosen not to work on military products. W orld readers who would like more infor mation.
Sandy Merrit
Campaign Against Arms Trade
5 Caledonian Road, Kings Cros 5 Caledonian Rocd
London N1 9DX

In your January editorial you quoted J. K alibraith as saying "no faith sustains this
military) competition". May I suggest tha (military) competition". May I suggest that
at least some of those whom you claim "are not really aware of what they are doing" are
in fact sustained by the insight that however in fact sustained by the insight that however
many things there are that we don't know there are some things we do know? They assume that some questions are closed and
that our survival as a nation depends on that our survival as a nation depends on
acting bravely on those assumptions, the most crucial of which is that our military capability keeps the Soviet Union from doing us what it did and is doing to Poland, E Czechoslovakia and Cambodia. D. J. Richardson

Stotfold
Hitchin
Hitchin
Herts

STATUS OF ENGINEERS

 Mr Wilson's letter in the February issue of the British professional engineer. Our of the British professional engineer. Ourmore
affluent
professional
brothersaccountants, doctors, solicitors et al. - have never tolerated the unqualified dabbler in
their midst, and have often joined battle to id themselves of these pests.
While it might be argued that the use of technical jargon, euphemisms and "buzz" niques serves no useful purpose, I would like to suggest that such methods have served to "repel boarders" from the aforen
professions since their inception. The logical, fair-minded engineer of today sits on the lower rung of the rewards ladder clad in his dungarees, clutching his oily
spanner - for such is the public image of him panner - for such is the public image of him
peering myopically upward. The view at - peering myopicaly upward. The view at "T" registration automobiles driven by doctors, lawyers and accountants clad in Savile
Row suitings - a procession to which John
Public rushes to doft his hat and Public rushes to doff his hat and offer his These opu These opulent gentry have no need of a
trade union; they have welded themselves trade union; they have welded themselves
into neat respectable units ideally suited to make money out of their skills. These pro-
fessional gentlemen have secured the unassailable right to "do their thing" to the exclusion of all other persons. Unqualified is unclean!
Surely
Surely there's a lesson to be learnt here clude the ungualified dabblersion must ex its its ranks The C.Eng. label is a joke compared to the The C.Eng. label is a joke compare,
respected M.D., F.C.A., and F.R.C.S. This may seem irresponsible, unfair, grasp-
ing, etc., etc., but \ldots who wants to drive ing, etc., etc., but \ldots who wants to drive a
74 banger, dress at Oxfam, and pay their ${ }^{74}$ banger, dress at Oxfam, and pay their never?
M. C. Hear
Hullbridge
Essex
indicating one or more bearings
number of usable signals available. These techniques are applicable to th
monitoring of VOR and ILS transmitters Fourier demodulation were to be used in both monitors and receivers, the VOR and ILS systems could become cost-effectiv
backups or alternatives to the Globa ositioning System (GPS) and Microwave Landing System (MLS).
Sobert G. Hue
San Bruno
Califoria, US
California, USA

SCIENCE AND THE

ELECTRON

Your editorial in the February issue on the ate of truth falls, in its last sentence, int an inexplicably common fallacy when it says, the electron is a particle or a packet of waves." (My emphasis.) That it is not the duty of science to answer such questit
best illustrated by a simpler example: "Is it true that the planets revolve around "tun in ellipses?" Of course. "II it therefore untrue that the sun and the
other planets revolve around the earth in cher planets revolve around the earth in any required accuracy by considering wheels revolv
not.
I can calculate the traiectory of a rocket to the moon no less accurately using the latte system for the first time could equally well selieve either hypothesis depending on hether their view fell firsty on the sun or on
a planet.
Similarly with particulate or wave elec
trons and with all other mathematical fic tions. We may decide, at times, to obey
Occam's Razor and accept the simplest Occam's Razor and accept the simples
hypothesis but we should not call this the "true" hypothesis
C. W. Hobbs
Apeldoorn
Netherlands

The word "science" is derived from the Latin
scientia, meaning knowledge.- Ed.
For 1224 samples with 256 levels (8 bits) error is 0.012 degrees (0.0024 dots, on many cockpit displays). Localizer error is
millionths of a d.d.m. (difference in depth o modulation) (0.00054 dots), and glideslop error is 84 millionths of a d.d.m. (0.00096
dots). The error in dots). The error in general is inversely pro-
portional to R times the square root of S, portional to R times the square root of S,
where R is the number of levels of resolution and S is the number of samples. Peak error is
approximately three times the standard de approximately three times the standard de
viation and mean error is less than the
and viation and mean error is less than the
standard deviation, for both VOR and ILS signals.
The Ny The Nyquist sampling theorem requires 11
samples of the ILS modulation and about 700 samples of the ILS modulation and about 70
samples for vOR. However, both includ voice and Morse identification in practice. samples would reject these modulation frequencies. It appears possible to build an nexpensive 1024 -sample 8 -bit demodulato second with some new microprocessors. On could build a single receiver that would recover full ILS data up to 15 times per
second, by storing and resetting a second, by storing and resetting a.g.c. vol
tage digitally The same receiver could scan tage digitally. The same receiver could scan
up to 30 VOR channels per second while

BIRDS' GEOMAGNETIC

 SENSEI. A Seath's spinal cord model (December flapping wing model, but suffers others alone. Taking first the latter: a magnetic sense of heading has been demonstrated by
Wiltschko. Keaton. Walcott, Emlen Fromme, Bookman, Southern and others in the robin, gull, swallow, pigeon and bunting. Bringing the spinal cord model into con
cordance wist this fact sems to need: (1) A neural discrimination of 1 part in 10° (the change in induction due to the alteration in
dip across a 1 m cage) to provide a north dip across a 1 m cage) to provide a north-
south orientation. (2) Some means of prosouth oriest-ation.
viding east-west orientation. (3) A means to judge air-speed to at least the accuracy siven
in (1). (4) A means to judge wind speed to the in (1). (4) A means to judge wind speed to the same precision. The last two ar
direction-finding on the wing.
A. M. Roberts published a theoretical
critique of this model several responses ${ }^{2.3}$. To summarize, briefly
his view: an unchanging electric field due to electromagnetic induction is sensible only by reference to external factors in relative
motion to the bird, e.g. leakage currents motion to the bird, e.g. leakage current
through the surrounding air. $t \mathrm{t}$ is not obvious to me that needed to decode, for example, a 10° (elec trical) signal change for a 20° (compass) bearing change is complex.
Turning Turning to some shared objections, I note:
(a) the noise due to muscular activity; (b) thermal noise; (c) electrostatic induction
arising from rolling motion in the atmospheric electric field; (d) piezo-electric voltaspe from feather quill strain; and (e)
tribo-electric voltage on feathers. tribo-electric voltage on feathers.
It transpires, however, that Ad. J. Kalmijn ${ }^{4}$ (Woods Hole) working with sharks, skates and rays, which in a sense are ideal animals for geomagnetic sense experiments, ha
given unequivocal demonstrations of their sensitivity to fields, induced magnetically, of values down to 1μ. .
Although it is true that they exhibit dedi-
cated receptors, the they too suffer from two important factors cited as shared objections above, viz. (a) and (b). The remaining factors are
confined to the surface of birds.

I come to the same view as Kalmijn: sensory perception of the electric field depends
upon the imbalance betw electric field and the charge movement which tends to neutralize it but which de pends upon tissue conductivity for its
occurence. Where an insulated conductor exists within the animal, a p.d. as high as the modulus of the electric field strength is cross this insulation barrier for some time constant.
B. Whatcott B. Whatcott
Addlestone

Surrey

References 1. A. M. Robert

1. A. M. Roberts, Physics Education, 1977, 12, pp. 2. P. Lorrain, ibid, 1978, 13, pp. 203-4.
2. B. Whatcott, ibid, 1978, 13, pp. 397-8.
 and Homin
$347-353$.

VIDEO RECORDERS FOR MICROCOMPUTERS
I have been very much aware of the explosive accompanying peripherals. One of the available devices, the video recorder. I think has
been left out, in spite of its great capabilities in access time and bulk storage.
In addition the technique of video recor ding (with the use of a closed loop cartridge and helical scan) could give rise to the
evolution of a new generation of peripherals. Has anyone given any thought to this
interface? interface?
Lazazos Lab
Athens
Greece

HIGH FREQUENCY DIFFERENTIATOR With reference to Mr Andrew E. Romer's ning the "High frequency differentiation described by S. Cussons (Circuit Ideas August 1978), I should like to point out that
the operation of Mr Cussons's circuit does not merely depend on the direct mathematic of the circuit elements.
In practice all operati
In practice all operational amplifiers intro
duce some delay between a change in the duce some delay between a change in the
input and a corresponding change in the output. In the example of Mr Cussons's
circuit, the output of the "low pass filter", V will be also a delayed as well as filtered will be of $V_{\text {in }}$. Mr Romer does correctly point
version version of $V_{\text {in }}$ Mr Romer coes correctily point
out that own is mathematically
equivalent to the equivalent to that of Mr Cussons, assuming
perfect operational amplifiers in each case.
 The inherent finite delay would allow the
value of C , the feedback capacitance, to be reduced, giving better high frequency per-
rormance. At high frequencies the circuit rermance. At high frequencies the circuit
forerates pulses at the leading and trailing generates pulses at the eaaing and trai
edges of the given narrow input pulse. Lastly, the circuit can perform up to 5 MHz (as long as the innut signal is not too great)
because the LM381 amplifiers are only slewbecause the LM381 amplifiers are only slew
rate limited, a gain-bandwidth product of 15 MHz being possible for small signals. The waveforms which should relate to Mr
Cussons circuit are shown here. Roger Green
Roger Green
Postgraduate School of Electrical Eng.
University of Bradford.

WW TELETEXT DECODER - MODIFICATIONS As will have been appreciated, the present Tess-Wode facility possessed by the Wire
lo Woldext decoder is of little use, due
to the rapid scan rate In to the rapid scan rate. In fact, the later
teletext kits have omitted the "roll-mode" for teletext kits have omitted the "roll-mode" for
this reason. However, the teletext pages have this reason. However, the teletext pages have
been arranged in the form of a book and the

ability to "browse" through the pages is a
desirable feature. The accompanying simple modification (see circuit) enables the user to display every
page whose units number agrees with that of page whose units number agrees with that of
the "page-units" selector. This provision allows the user to sequence through the entire magazine whilst giving, in most cases,
adequate time to obtain the page number and adequate time to obtats.
an idea of the contents
It is suggested that the present "roll-mode"
switch be replaced with the double switch be replaced with the double switch
(S) and the diodes may be mounted on the terminals of this switch.
terminal of thimen
IBA Mounteagle
Cono Mrieagle Transmitting Station
Conon-Bridge
Ross \& Cromarty

ENGINEERS, PUT ON

 NEW HATSWith regard to recent correspondence about the standing of engineers, might I make the
following points? Engineers' salaries have now fallen so far behind that they are unlikely to ever catch up again, rate of growth
being limited by the constraints imposed pay policies designed for the good of society as a whole. Lack of growth in British industry and one should not confuse growth with
conglomeration - the former is a creative onglomeration - the former is a creative
process, the latter merely acquisitive), lack of growth will necessarily limit the rate of occurrence of promotional opportunities.
Possible solutions are: (a) Becoming
Possible solutions are: (a) Becoming a
contract engineer or technician. This has
been common practice for technical writers and draughtsmen for some time. (b) Becom-
ing a consultant. This is the common mode of operation for many doctors, accountants, architects, etc. Why not engineers? (c) Becoming an entrepreneur. Having worked in entrepreneurial spirit has helped to create not just new facets of technology, but even Valley. And the interesting point is that those entrepreneurs were engineers - perhaps not so different from the reader.
Indeed, as a significant proportion of them
are British, it is likely that they too are British, it is likely that they too were
readers of that renowned institution, Wireless World!
A. Macrae
A. Macrae
Socionics

Socionics
Aberdeen

REVISE PREFERRED VALUES?
We've inherited a legacy of awkward comwas rare and expensive wut now that tolerances of 5% and even 1% are becoming inexpensive and common so that it becomes mediates, I would urge a revision of the scales of preferred values. I would suggest the scales below, displayed to the right of the
present scales, as the best compromise. present scales, advantage of such a revised
The great adver system is that, in the E24 series, all the integers, $1,2,3,4,5,6,7,8,9$ (and their
decades) are present, which simplififies arithdecades) are present, which simpities arith-
metic and also allows easy swithhing. The
second advantage is that even down to the E6

Present values	Suggested values
$10 \quad 10$	
11	11
12.12	12
13	13 an
$15 \quad 15 \quad 15$	14.14
16	16. 16, 3 v
1818	
20	20. 20 20 20 \%
$22 \quad 22 \quad 22$	22
24	24.24
27	
30	$30 \quad 30 \quad 30$
33.33 , 33	
36	
39 9	4040
43	
$\begin{array}{llll}47 & 47 & 47\end{array}$	$50.50 \quad 50$
51 56 56	
56 62	60 65
$\begin{array}{lll}68 & 68 & 68\end{array}$	$70 \quad 70 \quad 70$
75	75
8282	8080
91	90
100100100	100100100

series, the key values of $1,2,5$ appear which, like weights in a box for a balance, can be
added to form any value from 1 to 9 . added to form any value from 1 to 9 .
There are demerits of cours. In the $\mathrm{E6}$ series, the greatest ratio is 1.67 instead of the
present 1.50 (optimum 1.47); in the E12 series, the greatest ratio is 1.33 instead of the present 1.25 (optimum 1.21); the E24 series,
however, is little affected, the greatest ratio being 1.14 which is slightly better than the present 1.15 (optimum 1.10).
The scales suggested also preserve the
many-factored numbers $6,12,24$, Tony Kelly
Llanwrda Llanwrd
Dyfed

CITIZENS' BAND IN

THE USA
The citizens' band situation here in the USA particularly in the vicinities of large cities, is only 5 watts and $n o$ failities forally, with tuning of sets or installation of good aerials, it is difficult to transmit much farther than 10 miles at most, which is what it was intended for. Naturally the Yanks with an
almost unlimited amount of dollars at their disposal - even the lowest of the low (income wise) - can afford to finagle their
power up above the legal. ower up above the lega
Naturally the FCC has mplifier problem by making them illegal to urchase but not before millions of factory sthe same with marijuana exactly. It is now eggal to possess x number of ounces but illegal to sell it, yet 'everyone' seems to
possess it (marijuana) except for those who are still considered God fearing, and we seem to be in the dejected minority. The population explosion takes its toll in
more ways than protein scarcity the crowded radio spectrum.
I am certain I can command quite a fol; lowing of so called 'old-timers' who came by
their licences the hard way and by no means want what they toiled perilously hard for Jiven away to the undeserving
Teale KA6CRB
a fayette

POWEFTRAN 4 COMP 80

COMPLETE KIT only £275 + vat

Kit also available as Kit also available as
separate
PCB,
pecks. e...s.
Keyboards,
Cabinet, etc.

Value Added Tax not included in prices

UK Carriage FREE
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE ANDOVER HANTS SP10 3NN

To get Tokyo, dial this number.

Knowing the frequency of a particular circuitry specifically designed to improve station is one thing. But finding it with the aid of a mechanical pointer can be a bit of an electronic lucky dip.

Panasonic, however, have just made success a certainty. We've incorporated a direct frequency readout facility on our range of portable shortwave radios.

It gives you an exact visual indication of the frequency you've tuned to, right down to the last kHz .

So whether you're going for Tokyo or Turkey, with Panasonic you'll certainly know when you're there.

Andwhen youare, we have even more features designed to improve your reception.

Our super-portable DR26 model, for example, gives you a pre-selector tuning control, and all three models feature infinitely variable BFO pitch control for SSB and a switch to narrow the band width when powerful local stations intrude.

The DR49 you see above, gives you still more: 8 short-wave bands in addition to the FM, MW and LW bands, RF gain control, aerial trimmer and sophisticated
sensitivity, stability and selectivity

For more details and specifications on all of these radios, just complete the coupon below. Or better still, dial our number-it's Slough 27516.

For free colour brochures, send this coupon to: National Panasonic Sales Promotion Dept.
107-109 Whitby Road, Slough, BerkshireSLI 3DR Telephone: Slough 27516
Name
Address

Panasonic
 or time.

H.f. amateur band frequency synthesizer - 2

THE SYNTHESISER, shown in block form in Fig. 7, consists of two major form in Fig. 7 , consists of two major
parts: a phase-locked loop and an interpolation oscillator and mixer. The phase-locked loop is capable of producing frequencies at 500 kHz intervals over a frequency range which is greater than 3 to 1 , the actual range used being
from 7.0 MHz to 23.0 MHz . The output of the phase-locked loop is fed into a mixer, where it is combined with a signal from the interpolation oscillator
to provide continuous coverage from to provide continuous coverage from
1.5 MHz to 28.5 MHz in selectable 500 kHz bands. For amateur use only six of these bands are needed.
Reference oscillator
The reference-frequency oscillator in Fig. 8 is the key component which determines the frequency stability of the phase-locked loop. The oscillator circuit is taken from a design by L. NelsonJones in reference 3, although the oven, also described in this artice, was not give rise to an order of magnitude improvement in the stability obtainable. The oscillator uses a quartz crystal to produce a 1 MHz , t.t.l.-compatible, square-wave output. This is divided by 20 by one half of a 7474 and a 7490 to it would be theoretically possible to use

500 kHz reference frequency to obtain 500 kHz frequency steps, but then the programmable frequency divider would have to operate at the full v.c.o.
frequency - difficult without using frequency - difficult without using
schottky t.t.l. It would limit the maximum usable frequency to less than $1 / 3$ of that obtained by the current design, which is 50 MHz .

Voltage-controlled oscillator The voltage-controlled oscillator, shown in Fig. 9, uses a Motorola MC junction tuning diode. This combination gives a tuning range which approaches 4 to 1 and is usable to a frequency of well over 50 MHz . In fact, the oscillator MC 1648 can operate up to
200 MHz . It provides four key attributes:
-low peak-to-peak a.c. on the tuning diode (500 mV),

- automatic gain control of oscillations ential for such a wide tunig swing, logic-compatible outputs,
high spatre outputs, - high spectral purity close to the carrier by the use of a LC tank circuit.
This is not usually the case with RC oscillators.
The i.c. is from the e.c.l. family and produces e.c.1.-compatible output
evels. However, it is quite acceptable perate it on a 5 V rather than -5.2 V power rail with no degradation of per formances. The output is translated to t.t.1. levels by single-transistor stage and the 74 S 00 gate acts as a buffer. A sinu
soidal signal is taken from the tank circuit, which is buffered and used as the output.
The MV 1401 hyper-abrupt junction tuning diode provides a guaranteed apacitance ratio of 15 to 1 for a 10 ve swing is said to be greater than 25 to 1 . Whilst this component is fairly expen sive, reasonably cheap diode pairs in tended for a.m. radio tuning are becomwould serve equally well with appropriate minor circuit modifications. The output from the v.c.o. is pre scaled by the 74196 high-speed divide-by-10 circuit in Fig. 8 before input to the frequency range of the system upward to 50 MHz , or beyond 100 MHz if an e.c.l device were to be used.

Programmable divide

The programmable divider of Fig. 8 is stages using 74192 synchronous up/ down counters in the count-down mode. It is unfortunate that, with thes

devices, the carry/borrow pulse is counter and the incoming clocks. This makes these signals unsuitable for use directly as a "load preset data" signal. The circuit operates as follows, assuming that preset data has just been
loaded. Each input pulse causes the counters to decrement until the logic of the 7405 s connected to the outputs detects that a count of 2 has been reached. This causes the D input of the 7474 to be this state (count now -1). The inverse output from this state going low causes the preset data to be loaded into the 71925 and disables their clock. Since the 74192 outputs are no longer set to 2 ,
the D input to the 7474 is again low. Hence the next input pulse unsets this state (count now equal 0) and releases the counters, which commence decrementing on the subsequent clock. The Q output from the 7474 is taken as
the output of the programmable divider and fed to the phase detector. A diode matrix is used to select the
division ratio of the programmable division ratio of the programmable
divider with a single-pole, 6 -way switch.

To allow the selection to be by a remote connection to earth, the output from
the diode matrix is inverted by a set of SN 7404 gates before being connected to the programmable dividers.

Phase detector

The phase detector in Fig. 9 is the vantages that it is both a phase and frequency detector, and that a complete, system including filter amplifier is available in the one package. It is esis used in this application, since the frequency range covered exceeds 2 to 1 and straightforward phase detectors can register zero phase error on har-
monics. The MC 4044 also monics. The MC 4044 also gives an
output which is independent of the duty cycle of the two input wave forms. The phase detector consists of two parts, a phase frequency detector and a diodepump arrangement. The former pro up' and 'go down' and the latter serves to invert one of these and combine the two in analogue form. The operation of the phase detector can be seen from the

WIRELESS WORLD. APRIL 1979
following state-transition table.

This șows that the MC 4044 has the eight internal states A to H. States A frequency is detected to be less than the reference frequency, states C to F accommodate differing duty cycles between otherwise synchronized variable states G and H are entered when the variable frequency exceeds the reference.
The table shows what subsequent state the MC 4044 will adopt after a signal R and the variable signal V, given that its current state is known. An example of its use is shown in Fig. 10.

Fig. 8. Reference oscillator, diode matrix
and programmable
counter on one board.
WIREL.ESS WORLD. APRIL 1979 ?
er
board

Band	${ }_{\substack{\text { M }}}^{\substack{\text { Mixer output } \\ \text { frequency }}}$	$\begin{array}{ll} \text { coil } \begin{array}{l} \text { all wound } \\ \text { on } 6 \mathrm{~mm} \text { former } \\ \text { details } \\ \text { with core } \end{array} \end{array}$
${ }^{3.5 \mathrm{MHz}}$	12.5MHz	20 turns CT 34 swg
14.0."	16.0.".	16 turns CT 28 swg 8 tums CT 28 swg
21.0	${ }^{23.0} 1$	20 turns CT 34 swg
28.0	19.0 "	12 turns ct 28 swg
$28: 5 \times$	19.5 "	12 turns CT 28 swg
vco		${ }^{11}$ turns 288.5

Coil data
Fig. 9. Mixer. voltage-controlled oscillator
Phase detector and loop filter
two performance criteria were to be met: first, that in-band spurious outpu pressed by at least 60 dB and second that the transient response time should be unnoticeable by the operator. This latter aim canbe mels. less than about 0.1s.
equirements is an iterative proces The lock-up time requirement is usually in conflict with that for reference frequency feedthrough suppression. In frequency range is so great that most steps will exceed the maximum phase error limit of the MC 4044. Thus the Laplace analysis will not usually defin he transient response characteristics.
So, for a starting point. let us take the reference feedthrough suppression. If it
is necessary to have an additional low pass section to obtain the desired sup pression, this section should have a turnover frequency of at least one tenth of the reference frequency, to obtain reasonable benefit, and should also be loop, so as to have minimal unwanted effect on the loop phase margin.
Let us say that if $f_{\text {ref }}=50 \mathrm{kHz}$, a loo natural frequency of 150 Hz would well satisfy the above conditions. This would give us $\omega_{n} \sim 10^{3} \mathrm{rads} / \mathrm{sec}$. and since the ing factors is $5 / \omega_{n} ; t_{1}=5 / 10^{3} \sim 5 \mathrm{~ms}$ Hence, the time constant T_{1} can be

Fig. 10. Example of use of state-transition
table.
\square

In this example the phase detector is assumed to start in state C. The first simultaneous and the device adopts state E. Since the device attempts to synchronize negative-going transitions of R and V. when R goese adopts state B "go up". indicating that it has in this state until V also goes low, when it again takes up state C, giving no output. Thus the "go up" signal lasts for a period equal to ore R and V. This process is repeated on subsequent cycles but the "go up" signal lasts for longer each time-as the frequencies difference is increasing.

Loop filte

The loop filter uses a CA 3130 f.e.t. op. amp. This has the advantage that both the inputs and outputs can operate very close to the power rails and a balanced amplifier on the MC 4044 is not used because the voltage swing required for the varicap (10 volts) would cause the maximum $V_{c c}$ rating of this component parts, a low pass filter and the loop integrator.
As has been discussed previously, the characteristics of the loop filter largely

calculated: $T_{1}=K_{\mathrm{p}} K_{\mathrm{v}} / \mathrm{N} \omega_{\mathrm{n}}{ }^{2}$. For this we determined from experiments which gave:
$f_{\mathrm{vco}}=23 \mathrm{MHz}$ for $\mathrm{V}_{\mathrm{c}} \sim 10 \mathrm{~V}$.
$f_{\mathrm{yco}}=7 \mathrm{MHz}$ for $V_{\mathrm{c}} \sim 1 \mathrm{~V}$
so $K_{\mathrm{v}}=2 \pi \times \frac{23-7}{(10-1)} \times 10^{6}$
$=11.2 \times 10^{6} \mathrm{rads} / \mathrm{sec} / \mathrm{volt}$
Motorola specify K_{p} for the MC 4044 at $\frac{0.111 \mathrm{~V} / \mathrm{rad} .}{\text { The divide }}$
$N_{\text {min }}$ at $7 \mathrm{MHz}=\frac{7 \times 10^{6}}{5 \times 10^{4}} 140$.
$N_{\text {max }}$ at $23 \mathrm{MHz}=\frac{23 \times 10^{6}}{5 \times 10^{4}}=460$.
So $N_{\text {av }}=\sqrt{N_{\text {min }} \cdot N_{\text {max }}}=250$
Therefore
$T_{1}=\frac{11.2 \times 10^{6} \times 0.111}{\left(10^{3}\right)^{2} \times 250}=5 \times 10^{-3} \mathrm{~S}$.
ow a reasonable value for $C=25 \mu \mathrm{~F}$, so
$R_{1}=\frac{5 \times 10^{6}}{25 \times 10^{3}}=200 \Omega$.
The next stage is to calculate T_{2} and or this we require to propose a da

$$
\begin{aligned}
R_{2} & =\frac{2}{\omega_{\mathrm{n}} \mathrm{C}} \\
& =\frac{2 \times 10^{6}}{10^{3} \times 25} \\
& =82 \Omega
\end{aligned}
$$

Now the typical reference frequency suppression can be determined
Sidebands $=20 \log _{10}$
$\left(1 / 2 \times \frac{82 \times 0.1 \times 11.2 \times 10^{6}}{10^{6} \times 2 \times \pi \times 5 \times 10^{4}}\right) \mathrm{dB}$
$=70 \mathrm{~dB}$.
To ensure that this is bettered, an additional low-pass filter may be added by dividing R_{1} into two sections and connecting a capacitor from this point
to earth. If the filter so formed has a

urnover frequency of about 5 kHz this add about 20 dB to this suppres sion figure.

$$
C_{1}=\frac{4}{2 \times \pi \times 5 \times 10^{3} \times 200}
$$

$$
\sim 0.68 \mu \mathrm{~F}
$$

The total suppression of the reference frequency feedthrough will now cypically be 90 dB below the level of the carrier.
The va
The variation of the loop characteristics at maximum and minimum division
ratios can now be checked. The loop natural frequency is a function of th inverse of the square foot of N and th damping factor is proportional to the natural frequency.
$\omega_{n}\left(N_{\min }\right)=\omega_{n} \vee \frac{N_{\mathrm{av}}}{N_{\min }}=10^{3} \vee \frac{250}{140}$
$=1350 \mathrm{rad} / \mathrm{s}$.
$\omega_{\mathrm{n}}\left(N_{\max }\right)=\omega_{\mathrm{n}} \vee \frac{N_{\mathrm{av}}}{N_{\max }}=10^{3} \sqrt{460}$
$=750 \mathrm{rad} / \mathrm{s}$.
$\zeta\left(N_{\text {min }}\right)=\zeta \times \frac{\omega_{n}\left(N_{\text {min }}\right)}{\omega_{n}}=\frac{1 \times 1350}{1000}=1.35$.
$\zeta\left(N_{\text {max }}\right)=\zeta \times \frac{\omega_{\mathrm{n}}\left(N_{\text {max }}\right.}{\omega_{\mathrm{n}}}=\frac{1 \times 750}{1000}=0.75$.
This illustrates how the settling time will increase as the division ratio gets larger. As N increases, the loop natural
frequency reduce. This causes the loop to settle more slowly and in a more oscillatory
manner.
The maximum frequency step which can be made within the $\pm 2 \pi$ radians
limit of the MC 4044 can now be checked. The time T can be determined with reference to the normalized time domain response plots. This can be $5 \times 10^{4} \times 1 / 10^{3}=50$.

WIRELESS WORLD. APRIL 1979 and 920 kHz at 23 MHz . The time for the maximum step from 7 MHz to 23 MHz this $\pm 2 \pi$ radians limit will be exceeded.
$t_{\mathrm{c}}=2 \times \pi \times 200 \times 25 \times 16 \times 10^{6} /$ $\left(0.35 \times 10^{6} \times 11.2 \times 10^{6}\right)=130 \mathrm{~ms}$. original target of $1 / 10 \mathrm{~s}$, and has been confirmed by computer simulation.

Variable-frequency oscillator

 This covers 5 to 5.5 MHz and provides an output of about 100 mV rms. It uses a f.e.t. as in Fig. 11. It is adequately stable for reception of s.s.b. signals and the short term stability is better than 50 Hzover 15 minutes. The coil used was by over 15 minutes. The coil used was by
Cambion (type number $2419-3$) and is made of silver-plated wire, tension wound on a ceramic former. A more modest coil could be constructed but would sacrifice frequency stability. The U101 6 -75 pF s.l.c. law, which gives a substantially linear calibration over 500 kHz . A small amount of temperature compensation is included in the form of a 22 pF N750 capacitor across the tuning
capacitor. The oscillator is buffered by a capacitor. The oscillator is buffered by a
single transistor emitter follower, which takes its output from a capacitive tap across the tuned circuit, thus reducing the loading and defining the output amplitude.

Heterodyne mixe
The mixer, shown in Fig. $\overline{8}$, combines the output from the phase-locked loop with the signal from the v.f.o. By this means, continuous coverage is obtained The only disadvantage with this arrangement is that the tuning of the bands from 1.5 to 12 MHz is reversed from that for those from 12 to 28.5 MHz . The circuit uses a Plessey SL 641
double-balanced mixer, which provides adequate suppression of both v.f.o. and phase-lock loop feed through. The required sideband is selected by means of a tuned circuit. The Q of this is defined by the $820-\mathrm{ohm}$ resistor across it, to
ensure at least 500 kHz bandwidth for each band. The calculated suppression of all unwanted mixer components exceeds 30 dB , the best obtainable from a single tuned circuit. This is quite when used as the local oscillator in a superhet since there is effectively extra suppression provided by the r.f. tuned circuits. In addition, theconversion efficiency of the receiver mixer drops
off rapidly for small oscillator levels. A more general method of achieving this selection would be to use a series of bandpass filters with their pass bands carefully chosen to exclude major unwanted products. It is possible that a
greater degree of suppression could be achieved if these filters were more complex. The output from the mixer is buffered by a single-transistor emitter

Power supply
The power supply in Fig. 12 provides four voltage rails, two at 5 volts, one at 6 volts and one at 11 volts. The unit uses a standard charger transformer giving 0 ,
9 and 17 volts a.c. Stabilization is by i.c. and discrete component regulators. his reflects component availability at the time of construction, but there is no reason why standard three-terminal
regulators could not be used. The most regulators could not be used. The most concerns the earthing arrangements concerns the earthing arrangements,
which are essential to ensure isolation between the rails. Each regulator has a single earth point and these in turn are all connected to a common earth point, the earth-return rail for each supply from the logic also being returned to earth return currents of each supply are isolated from those of all others.
Two individually stabilized power rails are provided, one to supply the the rest of the logic. These separate supplies, together with the earthing arrangements mentioned above, are essential to prevent power supply noise generale by the

Construction

The unit was constructed on three pieces of 0.1 in Veroboard and was in-
corporated into the authors and $21 /$ in \times

Sin contained the power supply components except for the transformer, another of the same size containing the phase detector, loop filter, v.c.o. buffer and heterodyne mixer. The final board oscillator and dividers, together with scillator and dividers, together with diode matrix. The coils and transformer were mounted on a chassis which also formed an enclosing screen. $\times 41 / 2 i n$. The v.f.o. had previously been built in a diecast box which was located utside this volume.
The order of construction that the author would recommend is as follows. First build up the power supply to give struct the reference oscillator to provide a convenient source of pulses with which to check subsequent circuit groups. The reference oscillator divider comes next and can be tested using an
oscilloscope to monitor the output or alternatively, if one is not available, a frequency counter or general coverage receiver with the latter receiving a suitably attenuated version of the 50 kHz reference frequency, harmonics should trum. Now assemble the prescaler and the programmable divider, which is most conveniently tested using a frequency meter, taking the reference the correct output frequency is
obtained for various division ratios. It is now necessary, if this has not alread nd done, to commission the 11 vo and second 5 volt supplies. The v.c.o evel charger and output buffer should missioned in conjunction with the rammable divider and a frequency meter. It is useful at this stage to con firm the range of the oscillator by eeding the varicap diode from a suit ble high-impedance, variable-voltag ource.
The phase detector comes next, bein commissioned with the 50 kHz reference. If this is fed to both pins 3 and 1, i.e. no phase error, the output at pins 5 and 10 should be about 1.5 volts. If this feed is made only to pin 1 , leaving pin 3 volts, i.e. go up. Conversly feeding only in 3 the output should rise to 2.2 volts Next the loop filter can be assembled .o.s. device and that care should be taken to avoid damage due to voltag ransients during soldering or capacitive charge effects during hand ling. With this the loop can now b closed and, with any luck, frequency wave form can be made with a spectrum analyser, if one is available, or failin that, a general-coverage receiver with an " S " meter. The reference fee

Components List

wanted signal. Finally the v.f.o. and heterodyne mixer can be built and the
mixer output coils peaked, using an r.f. volt meter, in the centre of their respective bands.

References

3. Crystal oven and frequency standard. Nelson-Jones. Wireles World June 1970 pp. $269-273$ June, July, Aug, Sept 1972.

Police communications aided by microcomputer

A recent demonstration of a police com-
munications headquarters in Leicestershir which has been converted to microcompute control may well indicate new trends in Post Office /Home Office/police relations. The "Consort 2" computer-based network is a development Bigg Burndeswade. As repoctron in our March 1979 issue, the company was previo-
usis a part of the Ever-Ready (Berec) Group, usly a part of the Ever-Ready (Berec) Group,
and is now partly under the control of the National Enterprise Board, which holds 51% of the equity. The new system replaces a
v.h.f. communications centre which was functional but, according to a police spokesman, "out-dated," consisting of a manuallyswitched exchange in contact with mobile
and handportable units on the beat and handportable units on the beat. Anthough by no means revolutionary in
concept, the new process has some unusual features, not the least of which is the facility
it provides to the driver of a patrol car or name, address and age of the owner of any car. This is effected by means of a direct link through the carrier-operated main station to While such a facility could conceivably be used to, harass a motorist, its usefuiness as an instant check on stolen cars must be undi puted.
Briefly inked swite system comprises a v.h.f./u.h.f. monitoringching exchange with facilities for through (via a main station), linking and tabiles to base and to each other. It is also possible to patch in to local PAX/PABX lines, rendering the telep
Even though a Leicestershire chief inspector suggested that the Post Office is reticent
service for the copper on the beat is con the telephone service is free to everyone else it must also be free to the police.
With the recent changes which have taken place in Post Office regulations, permitting,
interface of private mobile radio with the telephone network, specifically to Air Cal Ltd, Burndept has unquestionably struck
while te iron is while the iron is hot. Linking a microprocles-
sor to a basic switching circuit is hardly a systems breakthrough, but the Home Office which selects and checks equipment for the police (and pays for it from the public purse
is clearly satisfied with the result since it has already equipped both Northampton and Nottingham as well as Leicester with the
"Consort 2." A further 11 systems have been "Oonsort 2." A further 11 systems have been forces, at an approximate cost of $£ 100,000$ fo

Motor speed controller

Inexpensive home-made alternative to $£ 20$ commercial model controllers

This motor controller is a cheap an effective home-made alternative much the same function. The total component cost is under $£ 5$. It is considerably lighter and more efficient in terms of battery power than the servo-operated rheostats of the past. It value to model boat enthusiasts. Because the motor control transistor derives its base current ultimately from the receiver power supply, it is impossible to set the boat off with the receiver switched off so that the off position of the transmitter control is biased toward the reverse speed end of its travel. This allows full speed to be achieved forward, but only a low speed in reverse. This nots the propeller unscrewing itself in mid-pond!

A FELLOW RADIO-CONTROL boat enthusiast wanted a device to control the electric motor in one of his scale boats. Ideally he wanted proportional speed control in forward and reverse, control outfit.
The modulation in these digital systems is similar to that described by M. F Bessant in his multi-channel control
system (Wireless World, October 1973). system (Wireless World, October 1973)
A number of width-modulated pulses of 1 to 2 ms duration are sequentially transmitted, with a synchronization pulse for the decoder. The repetition period of this train of pulses is typically
15 to 20 ms . The system used by Bessant and others is shown in Fig. 1 (a), with a slightly older variant at (b). In the lastmentioned system the sync pulse is longer than the control pulses, and the cycle repetition rate is usually indepen-
dent of the widths of the control pulses; in the modern system the cycle time can vary over a wide range, depending on the settings of the controls.
The frames of pulses are transmitted

Fig. 1. Examples of modulation system used in digital radio control are M. F Bessant's multichannel system using short sync pulse (a) system using long sync pulse used in some radio control
outfits (b) while (c) \& (d) show outputs from different decoders for channel.

$1 c_{1} \& C_{2}-4011$
over a suitable data link (a 27 MHz carrier for model radio control) and desplits up the pulse train presenting pulses for each channel at the appropriate channel output, as in Fig. 1 (c) or (d). In some decoders the "space" is added to the width of the output pulses,
although this appears merely as a fixed although this appears merely as a fixed
offset, which can be allowed for in setting up the servo or motor controller. The polarity of the output pulses also varies from one system to another. In deciding on a suitable method of
controlling the motor, the obvious approach was some form of variable mark-space switched control, using a power transistor. As the motor only drew about two amps, when statled, from a-12-volt supply, a medium power To obtain forward/reverse control a bridge circuit was considered, but rejected as the three extra transistors (two of them p-n-p types) would not be cheaper, or ocy
miniature relay.
Some motor controllers on the market use a standard electromechanical servo to operate a control on the motor control unit. This seemed clumsy, and
wasteful of an expensive servo and the wasteful of an expensive servo and the cided to use the width-modulated pulses from the decoder, suitably processed. to control the variable mark-space motor drive waveform.

Fig. 2. Circuit of the c.m.o.s.

 motor-speed controller that is lighter "servo-operated rheostats of the past.The system chosen to do this has th advantage of simplicity. Its disadvantage is that, because of the pulse stretching technique employed, the the overall frame length Therefore in systems such as Fig. 1 (a) there is slight interaction between other channels and motor speed. Since in most systems it is unlikely that all the other controls will direction simultaneously, the effect is hardly noticeable. In systems where these conditions do occur, or where motor speed is important, fixed framelength modulation wion have to be encoder to allow this is suggested at the end of this article.

Circuit description

Complementary m.o.s. devices are used in the complete circuit, shown in sumption and high input imper ance which facilitates their use as timing circuits. The incoming signal is inverted by ICl (a) and may be omitted where the decoder delivers negative-going pulses. The negative-going pulses at
point 1 (see also Fig. 3) trigger the
monostable circuit made up of ICl (b) \& (c). In the discussion that follows 2 ms duration, and the frame repetition period is 15 ms . The normal output pulse-width of the monostable is ad justed to 1.5 ms by R_{15}.
Operation of the circuit with pulse widths shorter than, equal to, and longer than, 1.5 ms is shown in Fig. ${ }^{3}$.
For short pulses the output of ICl (b) point 2 , is a constant 1.5 ms positive going pulse. This is compared with the input in NAND gate IC1 (d), whose output is a negative-going pulse of input and reference 1.5 ms pulses. When the input pulse is longer than 1.5 ms the output of ICl (c), point 4 , is a fixed 1.5 ms negative pulse, whilst the output of IC1 (b) reproduces the input pulse. NAND a) The lower part of the circuit in Fig. 1 driver/output circuits. The operation of the pulse stretcher is shown in Fig. 4. When the input pulses are very short, as in (a), the charge put on C_{3} through D_{2} and R_{6} is so small that the bleed resisto R_{7} keeps the voltage on C_{3} below the
trigger point of the 555 IC. This is connected as a comparator, with the threshold input held high by R_{9}. The comparator works in an inverting sense so its output is high when the voltage on

WIRELESS WORLD, APRIL 1979
$1 / 3 V_{\mathrm{cc}}$. In this state $\mathrm{Tr}_{2}, \mathrm{Tr}_{3}$ and Tr_{4} are off and no power is applied to the motor As longer input pulses are applied, C_{3} beint, so che comparator the trigger low. Resistors R_{8} and R_{16} are now connected to ground through pin 7 , discharging C_{3} until its voltage is below the trigger point once more. During this time the drive transistors are on and the motor is driven. Fig. 4 (c) shows the
operation of the circuit when the difoperation of the circuit when the dif-
ference pulses are half of their maximum length, 0.25 ms . The pulse stretcher drives the motor for half the frame period, 7.5 ms , thus giving halfspeed control. When the difference
pulses are at maximum length, 0.5 ms , the voltage on C_{3} never drops below the trigger point, so there can be a slight dead-band at full-speed setting.
The forward/reverse function is determined by the R-S flip-flop IC2 (c) and
(d). Figures $1 \& 2$ show that pulses occur at point 5 only for inputs shorter than 1.5 ms , and at point 6 only for longer inputs. The flip-flop therefore latches on whichever of these signals is present, and gives a steady signal to drive Tr_{1},
the relay drive transistor. Inclusion of the network C_{2}, R_{3} and R_{4} a avoids the relay switching over briefly for a couple of frames, in the presence of radio inerference. This is obviously unused.
Since the relay switches over at the centre dead point of the speed control, contacts can safely is off, the relay onsiderably more than their rated irect switching currents. Thus in the prototype, one of the popular miniature
12 V relays with a 185 ohm coil and nominal 2 A contacts is used to pass the full rated current of Tr_{4} (i.e. 6 A) and could be used for much more
The drive current into Tr_{4} : about 100 mA and set by R_{13}, has been chosen for a mid-range gain selection for this

Modifications and extensions
Modifications and extensions
To use the controller for much higher currents, Tr_{4} could be used as a driver or in the Darlington configuration or or a hefty p-n-p germanium device In the last-mentioned case it is essential to provide a low-value base-emitter resistor, to ensure the device turns off, even when hot. For currents much over 10 although Tr_{1} may have to be replaced with a Darlington pair to drive a lower resistance coil. To minimize interefence it would be wise to place these high-
fig. . Insertion of dummy puls rame equalizes frame lengths.
Example shows four-channel syste with controls at shortest pulse-width
setting (a), and at longest pulse-width setting (a). and at longest pulse-width
$1 / 3 v_{\mathrm{cc}_{1}}$

Fig. 3. Operation of the monostable and pulse-difference circuits with short input puls of ims (a), mid-range input pulse of 1.5 ms (b), and long input pulse of 2 ms (c).

Fig. 4. Operation of the pulse-stretching circuit with pulses shorter than dead-band (a), mid-range width pulses (b) and full-scale width pulses (c). Time is scale
distorted for clarity.

555
output
out

current components - output transisfrom the rest of the controller circuit.

Construction \& setting-up

The prototype was constructed in a miniature plastic box, about $70 \times 48 \times$
25 mm , with a piece of aluminium doubling as heatsink and lid. Tr_{4} was mounted on the inside of this lid, and all the other components except the relay mounted on a printed circuit board, although strip-board would be equally If the If the circuit has been constructed
correctly it can be aligned without instruments, although a multimeter or a c.m.o.s. - compatible logic probe would the correct channel output of the decoder, and the encoder/transmitter's control for that channel centred, the monostable/pulse-difference circuits can be checked and aligned. Adjust R_{15}
until no pulses appear at the output of until no pulses appear at the output of
IC2 (b): this can be seen on a scope or logic probe, or the direct voltage at this point can be measured on the sensitive range of a multimeter. If 12 V is applied then the relay should be heard to point. To adjust the pulse-stretch ratio control R_{16}, set the transmitter control to maximum or minimum and adjust R_{16} until the 555 output is low with no
positive-going pulses. This can similarly be seen on a scope or logic probe, or the average voltage measured with a meter. With 12 V applied and the motor connected the control can be adjusted "by ear" to give full speed. There should be a
little play in the transmitter control whilst full speed is still obtained, i.e. a dead-band.
If for any reason a full stretch cannot be obtained, the value of R_{6} may be changed. Note however that it is below remaining resistance being accounted for by the output resistance of the unbuffered c.m.o.s. gate. This effect could possibly be reduced if an emitterThe relative values of R_{6} and R_{R} trol the width of the off dead-band, and the relative values of R_{6} and $R_{8}+R_{16}$ control the pulse-stretching ratio. The in the range of 0.22 to $2.2 \mu \mathrm{~F}$. Larger values make the system response more sluggish, and smaller values spoil the linearity of the pulse-stretching law. Transistors may also be substituted although Tr_{1} should be a high-gain device.

Encoder modifications
It is possible for the settings of other controls to affect the speed of the motor, although the off and forward/ reverse changeover points are not affected. In applications where this

he following modifications are sugg ested, based on the Bessant design of encoder although equally applicable for similar encoders using c.m.o.s The modifications consist basically of to equalize the length of the frame whatever the setting of all the controls. This dummy pulse has a minimum length of 1 ms to avoid causing mal function of the decoder, which is as sync pulses. The modified pulse streams are shown in Fig. 5 : in (a) with all the controls are at minimum, and in

Fig. 6. Modifications to Bessant's of October 1973 issue give constant frame length by using existing counter and acrificing one control channel (top). or by retaining nine-channel capability ${ }^{*} 74293$ is recommended but has different pin connections than 7490 .
(b) at maximum. The dummy pulse generated by the extra components in he Bessant encoder of Fig. 6 (a). This implementation sacrifices one channel but if his is unacceptable then the variation in Fig. 6 (a) overcomes this counter of the original circuit with a divide-by-eleven counter. When the counter reaches binary 1010 (decimal 10) the decoder produces no output. In decimal 9 is disconnected In a count of when this end-state is reached the out put of the multivibrator stays high until the monostable (555 timer) goes low when the discharge terminal of the 555 grounds the common timing line. After low and the normal pulse sequence re-starts. The period of the monostable is set for just longer than the maximun

Micro-soldering!

Switching power supply design? revantiofera neat solution.Zni066.

Our ZN1066 switching regulator control and drive IC has everything. High direct drive capabil
eliminates costly and troublesome drive transtormers, so often required in other designs. It's ideal for microprocessor
supplies. Use it directly off line or as supplies. Use it directly off line or
a DC/DC convertor. You can have single or multiple outputs. Dead time setting and fixed notches in the output become a thing of the in component count and cost Contact IC Marketing, Ferranti Electronics Limited. Fields New Road, Chadderton, oldham OL9
Telehoné: $061-6240515$ Telex: 668038 .
FERRRANTI

Go ahead for UOSAT

The University of Surrey's "AMSAT team, in conjunction with the Univer sity's Department of Electronic En
gineering and AMSAT (UK) has now embarked on the building of Britain's first Oscar amateur satellite spacecraf (see WoAR, September 1978). The pro ject has been assured of financial sup port by British industry and a smal
full-time team (including a research officer, assistant, student and techni cian) is being recruited by the Univer sity's space studies group, under the direction of Martin Sweeting, G3YJQ
who as research fellow will be project manager
It is planned to have the spacecraft ready for launching into polar eart orbit in 19781-82. It will provide h. operators, for the first time, with tion on prevailing ionospheric cond tions. The project is also intended to stimulate a greater degree of interest in pace sciences in schools, colleges and universities. Experimental modules ar magnetometer, radiation counters earth-pointing slow-scan tv camera and synthesised voice telemetry system. A sum of about $£ 85,000$ has been raise and some 4000 solar cells, two nica
batteries and other key component promised. It is planned that several of the experimental modules will be built by amateur groups outside the univer sity.

Microwave mixers

European interest in 10 GHz operation, particularly in France, West German although British activity seems slightly down on a year or two ago. An import nt aspect of the work is the link with the development of low-cost "front ends" for future 12 GHz domestic t reception from satellites (January issue,噱 ow-noise receivers with a minimum o high-cost precision metalwork, a usually associated with microwave sys tems.
British 10 GHz activities have in the past been facilitated by the availability been towards the conventional approach of separate mixer and local scillator stages. The alternative approach of using a self-oscillating example) has received less attention and encounters some discouragement
from "old 10 GHz hands", on the grounds that such front ends are ex ssively noisy (often 10dB above exar However, a recent article in the French amateur journal Radio-REF by able interest in France, both among

mateurs and commercial firms and organisations interested in direc roadcasting from satellites, in the the University of Lancaster and de scribed by Lazarus, Kycheung and Novak in Microwave Journal (March
1977).

This work showed that the poor noise figure obtained with self-oscillatin itter of the oscillator and that by plying effective automatic frequency ontrol it is possible to realise sensitive very stable and do not require expensive local oscillator noise cancellation. To quote the 1977 article: "they are mpetive with, but require far les nicrowave hardware than the best candidates for practical system applica tions." Noise figures of 10 dB and up to 15 dB conversion gain have been achieved well above 10 GHz . French yielding results although F 3 PJ indicates it is still at an experimental stage. The trick is to concentrate into the centre frequency of the i.f. the energy which the f m jitter sidebands. eband
use of anti-parallel harmonic diode mixers with Jim Dietrich. WA0RDX, reporting in Ham Radio a 1.3 GHz mixer using half-wave lines and yielding a between all ports, and low oscillator injection at half the usual frequency John Wood, G3YQC, in CQ-TV reports currently working on 10 GHz equipment intended for fast scan ested in such work include G8EIM and GW6JGA/T.
Some 70 Italian amateurs are now using the 10 GHz band and distances of sea paths and $350-400 \mathrm{~km}$ over over paths between high sites. Most of the equipment uses 10 mW Gunn diodes with separate diode mixers and 30 MHz

The successful series of open Group continues with a further meetin at the IBA Engineering Centre Crawley Court, near Winchester, on Sunday, April 1 (progress report and open forum)

Moonbounce

"'world first"?
Dave Price, GW4CQT, of South Wales is believed to have established a world record in becoming probably the first
amateur to achieve "Worked All Continents" by using the earth-moon-earth path on 144 MHz . His final contact, late January, was with South Australia; last year he made moonbounce contacts tions across the United States.
Although the e.m.e. path loss on 144 MHz is rather less than 260 dB , the difficulty of achieving the necessary high aerial gains has tended to concenthe 432 MHz band, although Douglas Parker, G4DZU at Leeds, with a 56 . element array is one of the British stations equipped for listening on 144 MHz . Among those currently working on
432 MHz University Group with a 20 ft dish (26 dBi gain) and obtaining nearly 700 watts r.f. output from a pair of 4 CX250B valves, and Chris Bartram, G4DGU, with a group of eight Yagi aerials each providing some
15 dBi gain and a receiver using a Plessey GAT5 GaAs f.e.t. with a noise temperature of some $50-55^{\circ} \mathrm{K}$.

In brief

The RSGB has published a new (2nd) edition of "Television Interference Manual" by Barry Priestley, formerly G3JGO. This 80-page booklet provides a concise account of the problems arising
from the susceptibility of so much domestic electronic equipment to strong r.f. fields as well as offering much assistance in overcoming them (£1.56 including post \& packing from RSGB, 35
Doughty Street. London WC1 2AE). The FCC has launched an enquiry to determine the extent to which r.f. intererence impacts on consumer electronic products, medical products and public safety communications: one result may
be further funding of work on the Texas instruments high-performance tv receiver..... Increased sunspot activity has induced the American National Bureau of Standards to resume trans-
mission of time and frequency infor mation (WWV) on $20 \mathrm{MHz} \ldots$ To mark its 60 th year, Guildford \& District Radio Jociety is issuing a special Diamond Jubilee award to those contacting four period March 1 to August 31 (h.f. or v.h.f.), details from L. Bright, G4BHQ, 4 Dagley Farm, Shelford, Guildford.

TABLE 2 - Categorisation of Analogue i.cs			
$\begin{aligned} & \text { Circuit } \\ & \text { Type } \end{aligned}$	Single Function		Multi-Function
	Simple	Complex	
analogue simultaneous	ACE comparator op. amp. voltage ref. current ref. inverting amplifier normal amplifier	ACE multiplier function gen.	Arrays of ACE voltage regulator
notation:	shaped symbols	qualified symbols	arrays of ACE
analogue sequential	integrator differentiator	gated integrator track/hold.	
notation:	qualified symbols	qualified symbols	
converters		d.a.c.	a.d.c.
notation:		qualified symbols	qualified symbols

- Very-large-scale integration (v.l.s.i.i) ontains over 1000 gates per i.c.
However, the type of functional symbol used for an i.c. in ref. 3 depends on the may not correspond to hardware which plexity. Functional complexity may be defined in terms of single-function an multi-function circuits, with the ad ditional sub-divisions of simultaneous function and sequential function, as shown in tables 1 and 2.

Single-function circuits. Any circuit or i.c. which can be described by a single mathematical operation, logic function tion table is defined as a single function circuit.
Single-function digital circuits may be represented precisely and concisel using functional logic symbols and th dependency notation. Typical simple
single-function logic elements are logic gates and flip flops. Complex single function logic circuits composed of arrays of logic gates and flip-flops, such b.c.d. to decimal decoders, counters referred to in ref. 3 as digital computing elements (DICE). A single-function an alogue circuit is one which can be fully described by a single block denoting a mathematical operation, referred to as

Multi-function circuits. Highly-complex i.cs may be represented in two ways precisely, as a circuit composed of single-function computing elements concisely as a block with signal names which act as aide-memoires and refer to the precise diagram. The choice of symbol for an i.c. depends on the space diagram, and the level of information one needs.

Dependency notation

The key to functional symbols for single-function digital computing eledependency notation that allows the interaction between the control signals, data inputs and data outputs to be
shown precisely.

One important benefit of the dependency notation is that symbols using it correctly are readily identifiable without further explanation and therefore JOR NDUAL.N-LINE OR
W FLAT PACKAGE

Fig. 1. SN54155 digital integrated hown in the manufacturer's data

The dependency notation indicates the relationship between signals by to the affecting input which indicates the type of dependency, and an identifier which is both a suffix to the dependency indicator and is also placed adjacent to the affected signal. The
following dependencies are defined: gating dependency; Gx gates the data on the signal labelled x : Activate dependency; GX holds the output labelled x in its active state clocking depenments inputs prefixed by x

The clocking dependency is qualified by + , which is an edge trigger (1 negative-going) denoted in function
tables by 4 and by -1 a pulse trigger for master/slave flip-flops denoted in function tables by Ω
Inhibit is indicated by-H When an inhibit stands at its logic 1 state, it holds all outputs in that part of a digital
two-state or linear element in the 0 state if normal or the 1 state of negated. Isolate is shown by-바. When an isolate stands at its logic 1 state, it holds all outputs in that part of a digital tri-state or line circuit Z state
more precisely referred to as negated inhibit or negated isolate, as appropriate.

Negation and polarity indicators. In IEC $17-15$ and BS $3939-21$ a subtle differentiation is made between the logic negation indicator - which is used to annotate those signals which are active in the logic-0 state, and the polarity or
active-low indicator Δ which is

INPUTS			OUTPUTS			
SELECT	Strobe	DATA				
$8 \quad \mathrm{~A}$	1 G	1c	1 Y 0	1 Y 1	1 Y 2	$1{ }^{1} 3$
$\times \quad \mathrm{x}$	H	x	H	H	H	H
L	L	H	L	H	H	H
L H	ᄂ	H	H	L	H	H
H	L	H	H	H	L	H
H H	ᄂ	H	H	H	H	L
$\times \quad \times$	x	L	H	н	H	H
	NPUTS				UTS	
SELECT	Strobe	data				
B A	2 G	2C	2 YO	2 Y 1	2 Y 2	$2 \mathrm{~V}_{3}$
$\times \quad \times$	H	x	H	H	H	H
L L	L	L	L	H	H	H
L H	L	L	H	L	H	H
H L	L	L	H	H	L	H
H H	L	L	H	H	H	L
$\times \quad \times$	x	H	H	H	H	H

used to annotate signals which are' active in the low-voltage state. In this
paper, reference is made to the negative logic indicator, and logic-0 or 1 states are referred to in the text. However, the Dutch have understandably decided to drop the concept of logic states and use
only the active-low indicator, referring to low or high-voltage states - a measure which other countries may well adopt, with resulting simplification of their standards.

Pin name notation. For use in multifunction i.cs, pin name abbreviations or initials must be short but memorable and preferably standardized. Manufacexist in data sheests, where they already where practical.

Examples

Various practical circuits are shown to illustrate some key aspects of the adto functional logic symbols of DICE Manufacturer's diagrams of an SN 54155^{4} are shown in Fig. 1, applications of which are shown in the function tables of Fig. 2. Three of these applica-
tions are illustrated in functional logic diagrams of the element in Figs. 3 to 5 , while Fig. 6 shows the negative-logic dual of Fig. 5 .
Figure 3 shows the 54155 dual 2 -to-4line encoder in its basic form in positive shown bracketed.

Pin	Dependency
2,14,15	inhibit enable (negated inhibit)
3,13	binary-coded address inputs (activate dependency)

cates that enabled outputs are activated
when a ddressed. Ther inhibit dependency de-activates all outputs from that negated, meaning that they stand at the logic-0 state when activated and the logic 1 state when de-activated. Figure 4 shows the i.c. connected as a force. The BIN/OCT block is optional, the function being self evident from the symbol.
In Fig. 5 is the symbol when the i.c. is used as a 1-to-8-line demultiplexer in
positive logic. Here the addressing input gates data onto the addressed output. The G dependency is therefore applicable. The outputs are shown negated since they are high (logic-1 state) when not The negative
The negative-logic dual of the i.c., plexer, is shown in Fig. 6. Note that the labels on the outputs are changed because all high on the addressing input
negative-logic form is the simplest form of the symbol, and illustrates the point
that most logic systems are more conveniently represented in terms of negative logic than positive logic. Part of an array of eight $1 \mathrm{~K} \times 1$ bit raion in one symbol need not in rormain the others, saving drawing time and space. The precise operation of the circuit is readily discernible from this diagram, whereas prolonged study of the data sheet was necessary to find out, which illustrates the importance of publishing such symbols for all originators of diagrams to copy.

Timing diagrams

Precise signal flow through digital circuits, including details of clock pulse edges or levels which cause certain
actions, can be presented by means of timing diagrams as shown by Fig 8, in which the step by step execution of a

WIRELESS WORLD. APRIL 1979 computer can be seen. The operation of the circuit at each step is described by
the text blocks at the top of the diagram.
The page is usually divided by vertical pulse edges, which represent clock contained between these lines shows the circuit configuration, signal values, etc, during that clock pulse. Sequential elements that are triggered by the
clock-pulse edge are represented with the line passing through them, the clocking signal being positioned on the dashed line. The state after the clock edge is written to the right. A signal ine by that edge. The same.
draw the blochniques have been used puter's control diagram of the comshowing the computer as a sing panel, and illustrating the sequence tion of that peripheral in a much more helpful manner than a plain block diaor with timing diagrams forms a powerful technique, which can even be used for documenting the clock-pulse by clock pulse operation of minicomputer or microprocessor based systems, the in terpretation of these diagrams being of such drawings must be trained in the techniques.
There is a real danger that the revised EC standard system of functional logic will become even more complex than the existing standard. It is vital that rules that are difficult to understand are simplified or replaced, rather than ex panded, but for political reasons it simplify existing rules.

Argument about the shape of AND OR/INVERT gates is unimportan compared with the vital issue of producing intelligible blocks for digita computing elements, for which purpose rectangular gates seem preferable as in puter graphics. While recognising slight advantages of shaped gates in some circumstances, it must be accepted tha they are a lost cause as far as the IEC andard is concerned.
EC standard for logic that the new continue to express simple concepts in a complex and long-winded manner, milar to the current standards. of digital circuit diagrams, all of whom will sooner or later be affected by the new standard, interest themselves in nd contribute constructively to the

Fig. 5. Example of 54155 used as 1-to-8

Memory location
Read dependency
$\mathrm{w}=\quad$ Write dependency
AND relationship between dentifiers

Symbols

$D=$ data input of D bistable or data latch affected by
data output of sequential ele
\& = AND dependency

Fig. 6.Multiplexing 1 to 8 , using negative logic.

Fig. 7. Part of array of 1 M6518 r.a.ms.

Control signals

Ax $=$ activate dependency affecting
$C x=$ clocking dependency affecting
$\mathrm{Gx}=$ gating dependency affecting x
dentifiers. x is replaced by numbers of ower case letters to represent norma dependency. The following identifier ave defined meanings.

Fig. 8. The method suggested in the article to show the execution of an instruction by a minicomputer
necessary, of the new standard within he existing framework, as soon as its draft becomes available for public comment.
It is recommended that a team with experience of modern digital techni ques, documentation and programmed publish the standard symbois for availble logic elements; to validate, amen nd where possible simplify the rule
and definitions so that they are no mor mplex than necessary to describe the available i.cs; and to devise a course of programmed leannisy for use in in vices.

Notes

This article expresses the opinions of the rewhor the policy of BS Lof ly represent the policy of the BS Logic

The author

Giles Whittaker was educated at Cran brook School in Kent and shortly afte the Royal Signals, in which he served for three years. After his army service, he went to Aberdeen University, where he took an honours degree in electrica engineering and went immediately to
Ferranti, in Edinburgh to join a team of technical writers. Mr Whittaker is now project leader of the team, and is currently concerned with avionics equip ment using microprocessors.

Symbols sub-committee to which he was appointed after it was written Some symbols used in this article are additional to BS3939, where this has been found necessary for the sake of accuracy and clarity. While they are not will be incorporated in the forthcoming draft of the IEC standard, they illustrate the lines along which it must develop in order to document existing i.cs.

References

1. IEC, 1975, Graphical, symbols for binary logic elements, IEC Publica-
2. BSI 1977
3. BSI, 1977, Graphical symbols for tion 21, Issue 2.
4. Whittaker, G.M., 1978, Functional Logic Symbols, Ferranti Ltd., Edinburh, Report No. EIS 840
5. TI, 1975, TTL Data Book for design struments.
6. Panavia, 1977, SP-P-0004/A Section 6, Graphics Symbols and reference designators, Part 4, Electronic Sym
bols, Nato unclassified.

WIRELESS WORLD. APRIL 1979

NEW PRODUCTS

emperatures vary outside nor mal levels, warning is provided
by flashing the display on and intil manually re-set. Temperature sensing error is $\pm 1^{\circ} \mathrm{C}$ and
hysteresis can be set to $0,0.2,0.4$, $0.8,2,4$ or $8^{\circ} \mathrm{C}$. Power requirecritical, 9 V at 40 mA being all that is required, and typical applica-
tions are air conditioning sys tems, automobile engine temperature measurement, and heater control in addition to boiler and
freezer control. The package is a 40 pin dual-in-line type, suitable for use in ambient temperatures Instrument Microelectronics Ltd, Regency House, 1-4 Warwick Street, London WIR 5WB
WW305

Intelligent primary multiplex analyser A compact, easy to use
microprocessor-based instru ment intended for automated voice channel measurements has
been developed by Hewlett been developed by Hewlett
Packard in their South Queensferry, Scotland plant. Increased speed in circuit checking of mul-
tiplexed telephone equipment one of the claimed advantages of one of the claimed advantages
the new unit, and the integrated system, which represents a new
concept in automated measure concept in automated measure
ment of voice-channel apparatus has taken more than five years to develop. Comparable in size with
a laboratory oscilloscope a laboratory oscilloscope, the
analyser can sequence through analyser can sequence through
an exhaustive series of tests be-
fore calculating and an exhaustive series of tests be-
fore calculating and displaying
the results automatically As well the results automatically. As well
as characterising the analogue-to-analogue performance of pulse-code-modulated channel to digital and digital to analogue

| $\begin{array}{l}\text { performance can be made, and } \\ \text { the unit can be used to check out }\end{array}$ | $\begin{array}{l}\text { of less than } 0.005 \% \text { through the } \\ \text { entire audio range. Tuning error }\end{array}$ |
| :--- | :--- | :--- | frequency-division multiplexed

terminals and time-division multipliexed switching equipment,
including single channel p.c. including single channel p.c.m.
codecs. Standard CCITT meas codecs. r.o.m. and facilities are provided to allow an operator to store
alternative masks in non-volatile memory. In order to cover world requirements, two models are
being produced Model HP3779A being produced. Model HP3779A
provides voice channel measurements to CEPT (Conference of European Postal and Telecom-
munications administrations) munications administrations)
recommendations and with a digital option will test p.c.m. equipment conforming to CCITT recommendations G .711 and
G.732. This represents 30 voice G.732. This represents 30 voice
channels in 32 time slots encoded using the A-law and time division multiplexed into a 2048 k.bit
digital stream. The B version is inital stream. The B version is
intended for Bell system users,
and similarly it may be used to and similarly it may be used to
test p.c.m. equipment to CCITT test p.c.m. equipment to CCITT
recommendations G.711 and G.733, in other words, 24 voice channels in 24 time slots encoded
using the mu-law and time divi using the mu-law and time divi
sion multiplexed into a 1544 k.bit sion multiplexed into a 1544 k.bi
digital stream. Measurement
capability of both ers. capability of both versions is
available on request. Hewlett available on request. Hewlet
Packard Ltd, King St Lane, Winnersh, Wokingham, Berk
shire. shire.
WW306

Ultra-low distortion

 oscillator An ultra-low distortion oscillatorintended for critical laboratory for critical audio

4024A presents typical distortion
 D2? -0.0. are on/off, pre-set output voltag

ww307

Remotely controlled power supply Control of equipment by remote
means, mainly using ultrasonics has become an accepted "stunt" technique fulfils an industria function in the remotely controlod power supply from Oltronix recently announced the have duction of their RACPAC DPM ventional form in that signe con at infra-red level and consist o bi-phase coded, 6 -bit pulse
sequences, in charge of a digital output panel indicating output ranges of 0 to 32 V and 0 to 60 V a and 900 W . Functions controlled

and current (limit) plus several alternative features which cen be
built in to order by the manufac turer, although we have no in-
formation on just what these formation on just what these
options might be. The controller options might be. The controller
is hand-held, battery-operated,
and has an operational range of and has an operatitional rangete of
and
25 metres; furthermore it seems 25 metres, furtherrmore it seems
to be the first unit of its kind to appear, and may well be of inter-
est to laboratory and industrial est to laboratory and industrial
users. Final price depends upon
the range of options selected. UK users. Final price depends upon
the range of options selected. UK
ane agents: Wessex Electronics Ltd,
114-116 North Stret. Downend, 114-116 North Street, Downend
Bristol BSI6 5SE. Bristol BS
WW308

Production optical fibre

An operationally-proven optical
fibre for the domestic and in Abre for the domestic and in-
dustrial market is available on a four-to-six week delivery basis.
Specified as a six-fibre multiSpecified as a six-fibre multi-
channel cable for high
for channel cable for high
bandwidth applications, the
cable is said to save valuable cable is said to save valuable
cinstallation time, since it can be installation time, since it can be
laid and spliced in a fraction of
lised laid and spliced in a fraction of
the time required for twisted-
wire paired cables. wire paired cables. The makers,
the US Valtec Corporation, say it the US Valtec Corporation, say it
can be installed with conventio can ee installed with conventio
nal coaxial cable pulling equip nal coaxial cable pulling equip-
ment, and each colour-coded
sub-channel includes a dielectric sub-channel includes a dielectric
strength member which imparts strength member which imparts
its strength to commerciallya available, single-channel connec-
tors. The entire cable is protected tors. The entire cable is protected
in corrugated aluminium sheain corrugated aluminium shea-
thing to prevent crushing and the
access of moisture This cable is access of moisture. This cable is coded TC-MG-06 and the
manufacturer claims a signalcarrying capacity equivalent to
2100-pair 2,100-pair copper wire cable, even
though the fibre-optic cable's hough the fibre-optic cable's
diameter is only 16.5 mm , thereby achieving great savings in duct
and storage mace and storage space as well as
transportation costs. Further op transportation costs. Further op-
tions include steel sheathing as protection against rodents and copper conductors for electrical
ransmission. Communications transmission. Communications
Fibreoptics ivision, Valtec Cor-
poration, West Boylston, Ma. poration, West Boylston, Ma.
01533, USA.
WW309

If you like made to measure . . .

.. . you'll like MTG

- UNIVERSAL TIMER COUNTERS - UNIVERSAL COUNTERS - FREQUENCY METERS Professional testing equipment made to measure by MTG Instruments.

MIE
MTG (Instruments) Ltd.
Bournemouth, England

Telephone or write today for details, brochures by return of post.

Overseas Agents and Distributors.
The Netherlands. Reinaert Electronics. Blasiusstraat 14-16. 1091 CR Amsterdam, The Netherlands. Denmark. Transcan Electric APS. Mollevaenget 15. 2970 Horsholm, Denmark.
$\begin{array}{ll}\text { Kenya. } & \text { United Import Agencies. PO Box } 43951 \text {. Nairobi, Kenya, } \\ \text { Middle East. } & \text { EPIC. Electronic Precision Instrument Company, PO Box } 1262 . \\ & \text { Cairo, Arab Republic of Egypt. }\end{array}$ Cairo, Arab Republic of Egypt.

Applications are open for Overseas Agents and Distributors.

NORTH STAR * HORIZON

DOUBLE DENSITY PERFORMANCE
at SINGLE DENSITY PRICES.

* One Double Density Mini Floppy (180K Bytes)
* 16K Fast RAM
* Serial I/O Interface
* DOS/BASIC

HRZ-16W \&1330

* Z80A Based S100 Bus Expandable System

REFIDTHENEWNIEWS BEFORE IT BECOMESOLDIEWS

Company news changes fast in the electronics industry - but it can't outpace Electronics Weekly. Mergers, new projects, major policy changes, the battles for markets...the whole electronics business
scene is covered week by scene is covered week by week; and interviews with
leading industrialists provide insights into the way the top companies are developing their business You couldn't have a more valuable briefing on the company situation - but its value obviously depreciates if you receive Electronics Weekly late and are the last to know about developments that may vitally affect your business and your customers. For only 10 p a week you could see Electronics Weekly ahead of everyone. Fill in and post this coupon...and news about your industry will always
be new!

ElectronicsWeekly

102
WIRELESS WORLD. APRIL 1979

				We thought that might make you stop and look at our ad. Now that you have stopped why don't you take advantage of our keen competitive prices and place an order with us. You could save vourself $£ £ £ £ s$.						
3C Barley Market St.,TAVISTOCK, DEVON, PL1 9 OSF. Tel: Tavistock 18225439										

STAUTH ELECALEACAL \&

we wondered why....

NRDC-AMBISONIC UHJ

\therefore -

 SURROUND SOUND DECODERThe first ever kit specialy produced by Integrex for this British NRDC backed surround sound system which is the result of 7 years' research by the Ambisonic team. W.W. July. Aus.' '7'.
The nut virtually all other 'quadrophonic' systems (Not CD4), including the new BBC HJ 10 input
selections The decoder is linear throughout and does not rely on listener fatiguing logic enhancement techniques. Both 2 or 3 input signals and 4 or 6
output signals are provided in this most versatile unit. Complete with mains power supply, wooden cabinet, panel, knobs, etc. Complete kit, including licence fee $£ 49.50$ + VAT or ready built and tested $£ 67.50$ + VAT

NEW S5050A STEREO AMP

50 watts rms-channel. 0.015% THD. $\mathrm{S} / \mathrm{N} 90 \mathrm{~dB}$, Mags $/ \mathrm{n} 80 \mathrm{~dB}$
Tone cancel switch. 2 tape monitor switches.
Complete kit only $\mathbf{£ 6 3 . 9 0} \mathbf{+}$ VAT.

Wireless World Dolby ${ }^{\text {n }}$ noise reducer
 Trademk of Dolby Laboratores in

- switching for both encoding (low-level h.f. compression) and decoding - a switchable ef.m. stereo multiplex and bias filter. - provision for decooding Dolby \mp f.m. radio transmissions (as in USA)
no equil - no equipment needed for alignment. - check tape switch for encoded monitoring in three-head machines.

Also available ready built and tested
Calibration tapes are available for open-reel use and for cassette (specify which)
Single channel plug-in Dolby (104) PROCESSOR BOARDS $(92 \times 87 \mathrm{~mm})$ with gold plated contacts are available with
all components
Single channel board with selected fet
Gold Plated edge connector
Selected FETs $\mathbf{6 5 p}$ each + VAT $110 \mathrm{p}+$ VAT for two, $£ 2.10+$ VAT for fou
Please add VAT @ $121 / 2 \%$ unless marked thus*, when 8% applies (or current rates

Typical performance
 1% third harmonic content) Harmonic distortion 0.1% at Dolby level typically
0.05% over
0.12% Signal.to-noise ratio: $75 d \mathrm{~dB}$ (20Hz to 20 kHz , signal
at Doiby level) at Monito output Dynamic Range $>90 \mathrm{db}$
30 mv sensitivity.
Complete Kit'PRICE: $£ 43.90$ + VAT

Price $£ 59.40$ + VAT
Price $£ 2.40$ VAT

Price $£ 2.75+$ VAT

Price £1.75+VAT**
Ber

S-2020TA STEREO TUNER / AMPLIFIER KIT

SOLID MAHOGANY CABINET
A high-quality push-bütton FM Varicap Stereo Tuner combined Amplifier.
 Brief Spec. Amplifier Low field Toroidal transformer, Mag, input, Tape In/Out facility (for noise reduction unit,
ett.), THD less than 0.1% at 20 W into 8 ohms. Power on/off FET transient protection. All sockets, fuses, etc., are PC mounted for ease of assembly. Tuner section uses 3302 FET module requiring no RF alignment, ceramic IF INTERSTATION MUTE, and phase-locked IC stereo decoder. LED tuning and stereo indicators. Tuning range
$88-104 \mathrm{MHz}$. 30 dB mono $\mathrm{S} / \mathrm{N} @ 1.2 \mu \mathrm{~V}$. THD 0.3%. Pre-decoder 'birdy' filter. PR ICE. Nelson-Jones Mk. 2 Stereo FM Tuner Kit, Price: $\mathbf{£ 6 9 . 9 5}+\mathrm{VAT}$.

NELSON-JONES MK. I STEREO FM TUNER KIT

A very high performance tuner
A very high performance tuner
with dual gate MOSFET RF and Mixer front end, triple gang varicap tuning, and dual ceramic filter/dual IC IF amp.

Brief Spec. Tuning range $88-104 \mathrm{M} \mathrm{Hz} .20 \mathrm{~dB}$ mono quieting @ $0.75 \mu \mathrm{~V}$. Image rejection - 70dB. IF rejection

IC stabilized PS typically 0.4%
IC stabilized PSU and LED tuning indicators. Push-button tuning and AFC unit. Choice of either mono or stereo with a corice of stereo decoders.
Compare this spec. with tuners costing twice the price.

BASIC NELSON-JONES TUNER KIT $£ 15.70$ + VAT BASIC MODULE TUNER KIT (stereo) $£ 18.50$ + VAT PORTUS-HAYWOOD PHASELOCDED ww -055 FOR FURTHER DETAILS

Mono $£ 36.40$ + VAT With ICPL Decoder $£ 40.67$ + VAT With Portus-Haywood Decoder $\varepsilon 44.20$ + VAT

STEREO MODULE TUNER KIT
A low-cost Stereo Tuner based on the 3302 FET HF filter and high-performance IC Variohe INTERSTATION MUTE PLL stereo decoder IC. Pre-decoder 'birdy' filter Push-button tuning

PRICE: Stereo $£ 33.95$ + VAT
S-2020A AMPLIFIER KIT
Developed in our laboratories from the highly successtu "TEXAN" design. PC mounting potentiometers switches, sockets and fuses are used for ease of assembly and to minimize wiring Power 'onloff' FET transient protection

Typ Spec. $24+24 \mathrm{~W}$ r.m.s. into 8 -ohm load at less than 0.1% THD. Mag. PU input $\mathrm{S} / \mathrm{N} 60 \mathrm{~dB}$. Radio input S / N PRICE: $£ 35.95$ + VAT

ELECTRO-TECH COMPONENTS LTD.
364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667

1.7 Harewood Avenue, Marylebone Road, London NW1 Tel: 01-7242497 Telex: 21879

108

SOFTY the all in one Development And Training Aid with
Software-Firmware Copier and Programmer * Execute programmes on TV screen by resident micro-
processor programme will halt and display contents of all processor programme wit hal and
internal registers at set break points.

* Develop. your firmware on TV screen with true memory
mapped hex display with block shifts displacement calculations, insertion and deletion, byte matching and other assembler functions.
* Produce your firmware with high speed on board EPROM
programmer, approx. 2 2 programmer.
* Replaces monitor or debug programm
* Plus many other standard features including high speed
cassette interface and user programmable function keys.
* Universal Monitor which can be directly connected to ANY external microprocessor in system situ for firmware deve-
lopment (written by resident micro and executed by external lopment
micro).
SOFTY is equivalent to Development Systems costing thousands of pounds. Yet SOFTY only costs you for kit and full
instructions $£ 99.95$ plus $V A T$, built and tested $-£ 145$ pluu VAT. Full details availasle on request or send cheque plus Yo:
56 Oueen's Road, Peing Hants RG21 1REA Tel: (0256) 56417. Telex: 858747.
We welcome Barclay \& Access Order
(Trade and Export enquiries welcome)
ww-105 FOR FURTHER DETAIIS

J. L. Linsley-Hood High Quality Cassette Recorder

 Althese features added to the high huality metalworien make this an mosts tatistying k

TEST CASSETTE TC1

tape sperd, without test instruments. Suitable for any cassette recorder. Complete
with instuctions $E .25$ inc ViT.
 OPTIONAL EXTRASS Set of Six knobs. $£ 1.49$.
Auto-stop reed and mounting kit. $E 0.90$.

PLASTIC ESCUTCHEON
Suitabe for CRV and CT4 mechanisms. As used on our cassette recorder, complete
with mounting Screws $E 1.99$ plus VAT .
CASSETTE HEADS

LENCO CASSETTE MECHANISMS
We hold stocks of a range of Lenco tape transports tor all uses, we can also supply
pare parts. F or example:

CASSETTES

 These ests enable us to ofter what we think is th
Super ferric High Energy Low. Noise formulation
$\left.\begin{array}{c}\text { c90 80p } \\ \text { C60 } 60 \mathrm{p}\end{array}\right\}$
Complete in libraiy. case. Sutable for Micro Programming.
Cumatituma mit
HART ELECTRONICS

Penylan Mill, Oswestry, Salop

Personal callers are always welcome.
but please note we are closed all day Saturday

WHARFEDALE DENTON
2XPARFEDALE DEAKER KIT

 lardware. . Instruction manuel and As. taported
Price $£ 24.95$ per pair. Plus post and pack $£ 2.50$ WHARFEDALE LINTON 3XP SPEAKER KIT

 Maximum inpuit 40 waters DIN per channel.
Typical enciosure size $560 \times 305 \times 265$ mm

 Price $£ 54.95$ per pair. Plus post and pack $£ 2.50$

$=\mathrm{m}=\mathrm{m}$

 circulation list, you may not be getting the information you require from the journal as soon as you should. Why not soon as you should. Why
have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

Australia : Gordon \& 380 Lonsdale Street, elbourne 3000, Victoria	
Belgium: Agence 1 Rue de la Petite Brussels 7	
Canada: Davis Circulation Agency, 153 St. Clair Avenue West, Toronto 195, Ontario	
Cyprus: General Pres Agency Ltd, 131 Pro- dromou Street, P.O. Box 4528, Nicosia	a: W. H. Smith cots Street, Valle
Finland: Kolvuvara 01640 Vant	
Follerstrasse 2	Apartado 37, Amadora
Syngrou Avenue, Nea Smyrni, Greec	News Agency Ltd, P.O. Nox 1033, Johannesburg
Holland: Van Ditmar N Amsterdam 1004	
	$\begin{aligned} & \text { swe } \\ & \text { Sutil } \\ & \text { 2is } \end{aligned}$
	Basle
Intercontinental Via Veracini 9, 4 Milano	

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to :

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road Haywards Heath, Sussex RH16 3DH, England

Wireless World Subscription Order Form Wireless World, April 1979 ww 964

UK subscription rates	USA \& Canada subscription rates
1 year: $£ 7.00$	1 year: $\$ 23.40$

Other Areas 1 year: $£ 9.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value

Address

OVERSEAS ADVERTISEMENT AGENTS

Hungary Mrs. Edit Bajusz, Hungexpo Advertising Agency, Budapest XIV, Varosliget - Telephone : 225008 Telex: Budapest 22-4525 INTFOIRE

Italy Sig. C. Epis Etas-Kompass, S.p.a. Servizio Estero, Via Mantegna 6, 20154 Milan - Telephone 347051 Telex: 37342 Kompass

Japan Mr. Inatsuki, Trade Media - IBPA (Japan), B212 Azabu Heights, 1-5-10 Roppongi, Minato-Ku, Tokyo 106 Telephone : (03) 585-0581

United States of America Ray Barnes, *IPC Business Press 205 East 42nd Street, New York, NY 10017 - Telephone:
(212) 6895961 -Telex: 421710 Mr. Jack Farley Jnr. The Farley Co. Suite 1548 , 35 East Wacker Drive, Chicago, Illinois 60601 - Telephone (312) 63074

Mr. Victor A Jauch,
Elmatex International,
P.O. Box 34607

Los Angeles Calif, 90034 U.S.A
Telephone: (213) 8218581
Telex: $18-1059$
Telex: 18-1059.
Mr. Jack Mentel, The Farley Co., Suite 605 Ranna Building, Cleveland, Ohio 4415
Telephone: (216) 6211919
Mr. Ray Rickles, Ray Rickles \&
P.O. Box 2008, Miami Beach, Florida 33140 - Telephione: (305) 5327301 Mr. Jim Parks, Ray Rickles \& Co 3116 Maple Drive N.E., Atlanta, Georgia 30305. Telephone: (404) 2377432 Mike Loughlin, IPC Business Press, 15055 Memorials, Ste 119, Houston, Texa
77079 -Telephone: (713) 7838673

Canada Mr. Colin H. MacCulloch, International Advertising Consultants Ltd., 915 Carlton Tower, 2 Carlton Street, Toronto 2 - Telephone (416) 3642269

Hall Electric Limited International Tube Distributor

Haltron

.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS

116

Hilomast Lto

HILOMAST LIMITED
THE STREET HEYBRIDGE - MALDON ESSEX CM9 7 NB ENGLAND
Tel. MALDON (0621) 56480 TELEX NO. 995855
ww-078 FOR FURTHER DETAILS

FOTOLAK

POSITIVE LIGHT SENSITIVE AEROSOL LACQUER

 FOTOLAK
Developer
Ferric Chloride
 Plain Copper-clad Fibre-glass

 Single sided Copper-clad Paxolin, 10 sheets $245 \mathrm{~mm} \times 150 \mathrm{~mm}$
Clear Acetate Sheet for making master, $260 \mathrm{~mm} \times 260 \mathrm{~mm}$

Qatronics NEW

WW-924 FOR FURTHER DETAILS

Barrie Electronics Ltd.
3,THE MINORIES,LONDON EC3N 1BJ
TELEPHONE: 01-488 3316/8

COMPUTER APPRECIATION
86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel. Godstone (0883) 843221

ALL INVOICES, ENQUIRIES, ETC. TO OUR TEMPORARY ADDRESS OF

AUTOMATIC/STANDBY INVERTERS

These units are designed to permanently provide powe ro es sential
electrical equiment. Incorporating a $12 V$ DC trickle battery
 Cally restore maine powerverte event of a domestic power failure
All assembed in ventiated cases.
Featurs: Noon panel indicators to show mans or inverter
operaing mode, DC inline fused, AC output fused, separate DC and a.c. relays.
Inverer poweve outupu provides 240 V AC at 5 OHz with square wave
form smoothed and fiteverd.
Insalataion is simple, iust connect the mains lead to an earthed Tead of the eleatricill titem you want to permanently operate.
Guaranted 2 years. Delivery $46 / 20$ days.

ACE/1-Cased $66^{\prime \prime \prime} \times 4^{1 / 2 \prime \prime} \times 5^{\prime \prime}$ at 150 watts

Please add $£ 5.00$ per unit carriage - Overseas at cost Callers by appointment - Telephone: 01-736 0635

Appointments

DISPLAYED APPOINTMENTS VACANT: $£ 8.50$ per single col. centimetre (min .3 cm) BOX NUMBERS: 60 p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU.
PHONE: Barry Leary on 01 -261 8508
Classified Advertisement Rates are currently

Youriob as a Racio Tecmicician will concern yourin developing. Constructing, instaling, commissioning, testing, and maintaining
our equipment. In performing these tasks you will become familar with a wide range of processing equipionent in the audio. ot maicinvovave
range, involving modern logic techniques, microprocessors, and
 on a broad tront and widen your
assets whatever the future brings. Training is comprehensive special courses, both in-house and with
manutatures,
yive lever hacilities ee encouraged to take advantage of appropriate day release

You should be at least 19 years of age, hold. or expect to obtain
shorty, the City and Guilds Telecommunications Technic

 it the need for formal qualfifications. trade may allow us to disisense
 substantilly more, There a
work paying good rates.
Get full details from our Recruitment Officer, Robby Robinson, GCHO, Oaklay, Priors Road, Choltenhem, Gios. GL52 5 AJJ. If you

If you have enthusiasm and want to be versatile then we could give you variety and excitement in a fast expanding company
operating broadcast TV equipment.

ENGINEER

we are looking for

We operate and maintain $2^{\prime \prime}$ quad V.T.R. s, fying spot telecine film recording units, helical scan equipment and 16 mm optic sound recorders.
others, then you might fill the bill in our happy team. Qualifications - ONC rer the bill in our happy team. systems useful.

Salary - ACTT ITCA agreement $£ 4,205-£ 5,460$ according to experience
Write or telephone: Fred Weinel, Colour Video Services, 22-25 Portman Close, Baker Street, London, W.1. 01-48 2881.

Radio Communications

Electronics Engineers and

 Software DesignersMid-Sussex - S.W. London
Salaries up to $£ 7,000$
To join our expanding R\&D Laboratories covering a wide range of R.F spectrum, from L.F. to V.H.F. Equipments include transmitters and receivers for marine and land based use, radio navaids and radio monitoring remote computer controlled ssystems.
Electronics Engineers should have experience dectironics Engineers should have experience in transmitter or receiver
desifn, analogue ordigital circuit design, microprocessor applications.
Software Designers should be experienced Prog Soottware Designers should be experienced Programmers with an
interest in control signal processing Attractive salris -ore Aenerous benefits.
Contact. The Personnel Manager, Redifon Telecommunications Limited, Broomhill Road, Wandsworth, London S.W.18. Phone
$01-8747281$ (reverse charges).

Appointments

Electronics Technician

 £4017-£4917 pa inc.

 sstems incopporating microporocessor
 Pectronics qualitication ofsoond
industrif and mantucaturing experie

 Bounds Green Road. London N11
2Na. Closing date 2 April.

Middlesex Polytechnic

MAINTENANCE

ENGINEER
A Maintenance Enginer is required
for the repair and testing of arange
of profession audio
control sequipment. contro equipmen
Applicants should have sound
knowledgeo modern analogue and
digital techniques
 Sosarss a will ben negotiable around
E4, OOO p.a. Apply with full details of
qualifications to to
(London area).
No.

ELECTRONIC ENGINEERS

SMITHS INDUSTRIES LIMITED AVIATION DIVISION have openings in their Research \& Engineering Department which will appeal to
Engineers who seek a challenging and rewarding vocation. If you are interested in any of the following fields:-

*DIGITAL HARDWARE/ *ANALOGUE HARDWARE

 SOFTWARE(REAL-TIME COMPUTING) * CONTROL SYSTEMS

APPROVAL
WING AIRCRAFT)

- FLIGHT DECK INSTRUMENTS
TEST EQUIPMENT
- ELECTRONIC DISPLAYS
- MICRO ELECTRONICS

WEAPON SYSTEMS
(AVIONIC \& NAVAL)

Applicants should have preferably a Degree with a minimum of two years experience although, re
would be considered.

FLIGHT CONTROL
SYSTEMS

- FLIGHT CONTROL
.
ENGINEERING
STANDARDS
ENGINEERING (GYROS \&
ACCELEROMETERS)
\square

SMITHS INDUSTRIES LIMITED
AVIATION DIVISION Bishops Cleeve, Cheltenham, Glos. GLL52 4SF,
or use our ANSAFONE facility:-(0242-67-5359

Broadcasting Engineer
enjoy the benefits of working at the
fore of broadcasting technology
Wirequire an Engineer, male or female, qualified to HNC or equivalent level
with h t least three years experience in a broadcasting discipline to maintain the
 advanced electronic equipment at our main transmititng stations and relay statio
bringing Independent Television and Independent Local Radio into millions of
homes
The succesfful The successful applicant will become a member of a team based at our Black
Mountain Transmitting Station, Hannahstown, Dunmurry, Northerr Ireland and
and Will be requirsedt to travel throughout Northern Ireland. A current driving
is required. The post will involve some week-end working. Equipment Camiliarisation training w,
The salary will be on a sco
ment an to h higher on ccaleale rising to to $£ 6,3699$ per annum. With provision for movea productivity supplement.
Relocation expenses will be paid where applicable

broadaistin
aUthority
Act now! Write or telephone for an application form quoting Reff. No. WW/35ER
to:- Mr M. Wright Personnel officer- n.

$+$

TEST EQUIPMENT ENGINEERS

Come and join Rediffusion and help us design a brand new range of Come and join Redifusion and help us design a brand new range of
test equipment for production testing ur future colour receivers. Our
and present equipment is a combination of sophisticated manual and
automatic test consoles employing both analogue and digital circuitry. automatic test consoles employing both analogue and digital circuitry.
We are currently looking at the application of microprocessors to the testing of television modules and are confident that our future equipment will take advantage of these latest techniques.

Applications are invited from well qualified and experienced test equipment engineers to join our energetic young team intermediate levels, offering excellent salaries and opportunities for career advancement in this exciting field.
Since engineers are expected to see their projects through to completion, some travelling to our factories in the North East is expected to assist on installation and commissioning and to give back-up service where necessary

Additionally, an intermediate engineer is required to be based at Bishop Auckland in our Engineering Department on the main factory sit. This position involves some design and development work interspaced with the planned maintenance

If you are interested in these challenging positions and would like more details or wish to discuss the matter in depth, please write to or telephone

Mr H. Brearley,
Rediffusion Consumer Electronics Limited.
Fullers Way St. Chessing Fullers Way Sth., Chessington, Surrey KT9 1 HJ
Telephone: $01-3975411$

WE HAVE AN OPENDODR FOR AN OPEN MIIII

 Test EngineersOpen minds and creative thinking have
made Linotype-Paul the market leader in the field of sophisticated phototypeserting industries.
We are leaders not by accident but by
design and in order to maintain our position and our record growth pattern we now have excellent openings for
electronics engineers at all levels. electronics engineers at all levels. If you have an electronic engineering
backyround coupled with at least 2 years
practical practical experience and/or a forma
qualification wed like to meet you Anyone with experience in the followin Anyone with experience in the following
would also be welcome. Prototype Wirers, A.T.E. Engineers, Electronic and
Mechanical Inspectors, Skilled Fitters P.C.B. Draughtsmen/women, Programmers, Electronic and Mechanical Development Engineers

Ring Cheltenham 41441,
reversing charges, or write to
Patrick Cooper. Personnel Office
Linotype-Paan itd
Linotype-Paul Ltd., Chenelham House,
Bath Road, Cheltenham.

Radio Technology and the Future

TELECOMMUNICATIONS OPPORTUNITIES

The vacancies are in
Stanmore, Middlesex

Candidates (aged at least 25) must hàve ONC Engineering (with a a pass in Electrical En
ineering ' A ') or in Applied Physics, or hold gineering 'A') or in Applised Phsyics, or hold an equivalent qualification. In addition, they mus
have had at least 7 years
experience of skilled have had at least 7 years' experience of skilled
work on radio, radar or other electronic work.

Salary in London starts at $£ 5230$ and rises to ion prospects. Non-contributory pensio scheme.

For further details and an application form (to
be returned by 5 April) 1999 write to Civil
Service Commission Alencon Ae returned by 5 April, 1979 write to Civi
Service Commission. Alencon Link, Basing
Sotek, Hants RG21 1 JB, or telephone Basing Stoke, Hants RG21 1JB, or telephone Basing
stoke (0256) 68551 (answering service stoke
operates outside effice hours). Please quote
ref: $T / 5096 / 4$.

HOME
 OFFICE

Design/Development Engineers c $£ 6,000$ p.a.

Croydon
Aeronautical and General Instruments Ltd. is an expanding public company of aerial reconnaissance equipment, marine instrumentation and
telecommunications.
Two Electronics Engineers are needed to spearhead design and development work on an exciting new product area in the telecommunications field. They would be involved in both software and hardware aspects of microprocess design and
involved.
Applicants should have at least two years design experience, preferably in logic design. They could therefore be in their 20 's, and should be qualified to HNC or degree leve
These are key appointments providing both an interesting challenge and Please send brief career details

Faculties
Technology
Electronics Designer

 ELECTRONICS
 instal atopiliots. etc. to service and
 apply giving details of experience
salary required.e.
We are ealso preared to offer an
and We are aso prepared to offer an
engineening parnnership arrange.
ment. if you are the right man. TEEESONIC MARIMELT
243 Euston Road 243 Euston Road
London N.W.1.

Ëngineera

- DESIGN / DEV
- TEST

High Salaries - Most Area Phone 01-731.4353 LeApex Personnel

Senior Engineer

Service Continuity Section

Senior Electronics Service Engineer

A SENIOR MAINTENANCE ENGINEER IS REQUIRED FOR THE REPAII AND CALIBRATION OF PROFESSIONAL EQUIPMENT USED IN THE EXECUTION
OF RESERRCH PROGRAMMES AT THE OF RESEAARCH.
This involves the maintenance of oscilloscopes. pulse generators, counters, digitat loltteiter.
precision high power magnet controller and
analysers of various kinds. Experience in fault
finding on some of the equipment is necessary, It is hoped to gradually extend the main It is hoped to gradualy yxtend the main
capability to inclide micropocessors,
computers and associated peripherals. computers and associated peripherals. Please send for an application form to M. L.
Malpass, Personnel Manager, Philips Research Malpass, Personnel Manager, Philips Research
Laboratroies, Corss Oak Lane, Redhill, Surrey,
quoting reference 113 .

Research
Laboratories

t's no eecret that automatic test and inspection is revolutionizing the electronics induintry.

Our Autotest systems, with an international reputation for both versatility and reliability, are used for varied applications, from testing television PCB's to fault location on avionic systems. At the sharp end of our Autotest business the collowing opportunities:.following opportunities:-
Product Training Officer
Responsible for the arrangement and presentation of training courses both at St. Albans and at customer premises in the programming and use of Autotest Customer Services Enginee
To join a team who write high level language user programmes for our customers both at the commissioning stages and as an on-going service after delivery of ystems.
Candidates should have digital, analogue or measurement experience and st qualifications may be significant, emphasis will be placed on ability. Both the above posts carry attractive salaries together with opportunities for reater involvement in the commercial field. Conditions of employment are excellent including productivity bonus, pension and sick
gor iterest you, please telephone John Prodger or write to the

Marconi instruments

 Recruitment Manager,| Marconi |
| :--- |
| Freepost. |

Freepost.
St Albans, Herts.
Telephone St Albans 59292
A G.E.C. MARCONI ELECTRONICS COMPANY

UNIVERSITY OF LIVERPOOL DEPARTMENT OF PHYSICS ELECTRONICS TECHNICIAN to assist with developing and con sffutuing digitaf and analogue electronic equipment. Applicants must possess ONC, C \& G or equivalent perience. Good opportunity to learn Application forine firby bê obtained trom The Registrar. The University, p. 0.80×147 ivetpool. L69 $38 X$, Quote Ref: RV/508/WW

READY, STEADY, GROW!

Join a firm that's doubled its profits for each of the last three years and
ELECTRONICS SERVICE ENGINEER
ELECTRONICS TEST ENGINEER
ELECTRONICS TEST TECHNICIA
INSTRUMENT TECHNICIAN WITH PRECISION, MECHANICAL AND OPTICAL EXPERIENCE
Tolophone or write to Bill Harmsworth, Rofin Ltd., Winslade

Radar/Radio Engineer

 tions desirable and it is essential that
applicitat have consideral ex.
perience and are capabie of working

 time. Written applications, giving
aege, experience and qualifications, to
the age, experience and qualitications,
the Arert.
Airport, Southendo-on-Sea, Eouthen
cheisea college ELECTRONICS TECHNICIAN ENGINEERS/TECHNICIANS

WIRELESS WORLD APRIL 1979
Appointments

(MPIONEER

An extensive expansion programme to diversify our after sales service activity has created additional vacancies at our service centre in Iver

BENCH SERVICE TECHNICIANS

We require service personnel to join a friendly team of Technicians in our modern well equipped service department and laboratory to assist in repair and maintenance of sophisticated Audio and In-Car stereo equipment of our world renowned brand.

Applicants should hold C \& G Radio and TV, Electronics Technician or equivalent certificate with a minimum of two years' experience in the Audio field. Alternatively five years' of relevant experience with sound knowledge of Electronics is acceptable.

Salary in the area of $£ 3,500$ to $£ 4,500$ per annum, according to experience
If you think that you can help us in our expansion programme then contact us now and find out more about our generous staff benefits. We offer excellent working conditions, training programmes and day release to advance your career and knowledge in the field of high fidelity.
Luncheon Vouchers. Pension Scheme.
Apply in writing to: Mr. A. H. K. Littlemore, Pioneer High Fidelity (G.B.) Ltd., The Ridgeway, Iver, Bucks., or telephone Iver (0753) 652222/7.

PROJECTION ENGINEER

SENIOR JIG \& TOOL DESIGN DRAUGHTSMAN WOMAN

PLANNING ENGINEER

DRAUGHTSMAN/WOMAN

SERVICE ENGINEER

 equired for the repair andmaintenance of electromechanical coin machines. ortro
masic knowledge of wiring diagrams ul but training wall be given
fust have a clean cence. Salary clean drivin

83 Lavender Hill LT 83 Lavender Hill
Batrorsea, s.W.11
Tel: 2284359

Appointments

LABORATORY TECHNICIANS

ENGINEER

Up to $£ 6000$ p.a.

We are one of the world's leading producers of sophisticated environmental test equipment, with over twenty years' experience in high performance
electro-hydraulic test machines and vibration sysems.
Excellent career opportunities exist for engineers with HNC or equivalent in Electronics or Radio and TV and an interest in mechanics, to undertake bench testing of printed circuit assembent in the testing of complete systems. Applicants should have experience in fault-finding to component level

Apply in writing, or

elephone
Servotest Ltd.
Sarsfield Road
Greenford
Tel: 01-998 1552 (Mrs. T. Malin)

SERVOTEST

(9056)

Sony Broadcast Limited

Senior Lecturer

to assist the Technical Training Manager in providing
expertise and support for our products, with a special expertise and support tor our products, with a special
emphasis on conducting training courses for customers emphasis on conducting training courses for customers
and particicipating in the planning of further expansion of
this important function. this important function.
Candidates should have a wide experience in video tape Candidates should have a wide experience er in tideo tape
recording, in the theotetical analysis of digita circuitr
and analoueldigitial signal processing, and a sound and analogue/digital signal processing, and a sound modern apoplications. They must have the abiility to
present ideas clearly to a wide range of students and present ideas clearly to a wide range of students and
answer the most difiticult questions.
The above senior position is permanent at the Company's The above senior position is permanent at the Company
modern offices in Basingstokes new business area. . .
certain amount of travel through the whole marketing certan a mount of travel throught hhe whole market
area and to the Headquarters of Sony Corporation could be involved.
We will provide whatever additional training is necessary to familiarise the success
and sophisticated equipment. A highty competeditivie and antractive salary is offered to
the right person, together with the usual benefits of a the right person, together with the usual benefits of a
large multi-national Company,
Please write in contidence, Please write in con
essential detais to:

SONY
 Broadcast $\begin{gathered}\text { City Wall House } \\ \text { Basmg View Basingstoke } \\ \text { Hampshire UK RG21 2LA }\end{gathered}$

GRANADA TELEVISION LIMITED YOUNG ELECTRONIC ENGINEERS

(Male or female
We are looking for Electronic Engineers to fill a number of interesting jobs in the technical operations department at our Manchester studios.
The duties cover the operation and maintenance of all our electronic equipment including TV cameras, video
recorders, film scanners and distribution and display
equipment. The kind of people we need will probably hold armal qualification in electronics engineering, but more inportant, will have a good understanding of basic
electronics including digital techniques and the engineering principle of colour television. They must be fit with normal colour vision and prepared to work irregula ours including weekends. People with no previous
broadcasting experience will be appointed at $£ 3,775$ pe broadcasting experience will be appointed at $£ 3,7$ per
Experienced staff will be appointed at the appropriate point of this scale. Four weeks' annual leave plus pension and free life assurance.
Write with full details of education, qualifications and experience, stating age to

Robert Connell
Granada Television Limited
Quay Street
MANCHESTER M60 9EA

 ENGINEERS/ SCIENTISTS

Our United Kingdom subsidiary is
scientists to join our back-up team.
The high-technology scientific instruments which form our product range
are at the forefront are at the forefront of their design and require a first-class understanding
of state-of-the-art electronic techniques, coupled with a high degree of intate-ot-the-art electronic techniques
inititive in tackling unusual problems.
The job requires the ability to troubie-shoot on site down to componen
level; after an initial period, to carry out full system installation leveli, after an initial period, to carry out full system installation,
commissioning and operator training and to liaise at a professional level
with both the scientific user and the system designer.

The ideal applicant will be self-motivated and well presented, as befits the Company's professional image. A keen interest in al aspects of elec(foreign a travel also opossible) and the capability of working away from base
without supervision are also essential. A minimum qualification of HNC without supervision are also essential: A minimum qualification of HNC
(electronics) is required and some design experience would obviously be (electronics. is required and some desisn experience would obviously
an advantage. Some knowledge of the German language, although no

This is a challenging opportunity for those prepared to work hard, and will
be rewarded by way of basic salary plus incentive.
Interested? Then please write giving full details of qualifications, career to nterested? Then please write
date, personal data, etc., to:
R. F. Ladbury

BRUKER SPECTROSPIN LIMITED Unit 3, 209 Torrington Avenue, Coventry CV4 9HN

Vacancies exist within the BBC's Equipment Laboratory Technicians and Laboratory Technicians.
Duties include the testing of newly manufactured interesting and varied, covering techniques in sound, television and radio frequency engineering, For the Senior Laboratory Technician posts
applicants should possess 3 vears' relevant experience together with HNC and City and Guilds ET.C. in either Telecommunications or Electronics. The current salary range is $£ 4195$ to
$£ 5715$ but this is under review.
For the Laboratory Technician posts applicants Should have 1 year's relevant experience together
with ONC and Final City and Guilds in either with com and Final City and Guilds in either salary range is $£ 3805$ to $£ 4605$ but this is under

> review. Accessil

Accessibility is reasonable due to the proximity of he M4 and Gunnersbury station. Staff restauran
acilities are available and conditions of service facilities are avai
Requests for application forms to Engineering eruitment Otficer, BBC, Broadcasting House L9.E.4017/WW.

BBG

Appointments
LINK

TELEVISION

WE ARE
Link Electronics Ltd., a successful ex panding company with room for in dividual ability to make itself felt.

WE MAKE A full range of TV studio broadcast equipment, including colour cameras.

WE NEED DEVELOPMENT ENGINEERS at senior and junior levels, to put good theoretical knowledge into practice in circuit design
of all types of broadcast equipment employing the latest techniques. You must have 2-3 years' relevant experience in industry, preferably obtained in a TV or similar environment.

SENIOR TEST ENGINEER to undertake test and commission of advanced and equipm cameras and associated senior level and so direct experience of similar equipment is a must.

WE OFFER:

SALARY Above average, according to ability and not a rigid grade structure.

BENEFITS Generous holidays, free life and health insurance, pension scheme, staff restaurant, relocation expenses

LOCATION A modern factory in a very pleasant part of Hampshire with no traffic problems and easy access to London, the South Coast and many major towns

HOUSING A wide choice. Prices from about $£ 15 \mathrm{~K}$ upwards if you want to buy.

TO APPLY: Either phone Jean Smith at Andover (0264) 61345 and ask for an application orm or write with enough information to make form unnecessary.

LINK North way. Anduver
Hampstare:
Enganand (1)

Appointments

WIRELESS WORLD. APRIL 1979

Section Chiefs c. $£ 6,000$

Test Equipment Repair and Calibration
Our lient isa prom
success in ther iried.

The work is caried out in aspacious, custombuitit, clean air, temperature controlled

[AK] ADVERTIEING

 We need another

Technician/Engineer

To join the
of London.
of London. As a major television company we make extensive use of video-tape recording for programmes show throughout the UK and across the worligh standard:
section is very active, and works to a high section is very active, ande technical interest and is large enough (a major re-equipment programme is pending), but is still informal enough for satisfying involvement.
Ideally, we need someone (male or female) with experience of $V 1 \mathrm{R}$ equipment, but we d in win
consider of broadcast or CCTV engineering
Themoney is good - up to $£ 5719$ to start(depending on experience and qualifications) with automatic progression to £6839p.a. and further senvice Application forms from:
Recruitment Officer,
Recruitment Ofticer,
ATV Network Limited
ATV Network Limited
Eldon Avenue, Boreham Wood, Herts. Pleasequote Vacancy 101(E)

NeneCollege Northampton
School of Technology
(1) Applications are invited for the post of

Lecturer, Grade 1 in Electrical Engineering
Candidates should have recent industrial experience and be of Candidates should have recent industria texperition to lecturing in
graduate or Chartered Engineer status In addite
electricial and electronic grinciples, it is expected that the successful electrical and electronic principles, it is expected that the successtul
candidate will be able to assist in the teaching of microelectronics. Salary scale: $£ 3192$ - $£ 5334$ (under review) with additions for
qualifications and experience.

Lecturer, Grade 11 in Electrical Engineering
Candidates should be graduates or Chartered Engineers with recent 1 Candidates should be graduates or thareled En yill be able to lectu
industrial experienc. The successtul aplicich
in one of the fields of Industrial Control. Power or Electronics. one of the tields of Industrial Control. Power or Lectronic 1979 The Post is tenable for one academic vear from September 1979 .
Salary Scale: $£ 4101-£ 6558$ (under review) point of entry depending Salary Scale: $£ 4101-£ 6558$ (under review) point of entry
on previous experience. Application forms and further particulars are avalation Parik, Senior Administration
Northampton NN2 7AL
Northampton NN2 7AL.

$$
\text { + }+
$$

TOP JOBS IN

 ELECTRONICS Posts in Computers, Medical,Comms, etc. ONC to Ph.D. Free
service. Comms,
service. Phone or write BUREAUTECH
AGY, $\mathbf{4 6}$ SELVAGE LANE AGY, 46 SELVAGE LANE;
LONDON, NW7. $01-959$ L3517.

Nolio telephome servic

LABORATORY TECHNICIANS

BBC Engineering Designs Department requires technicians in Central London laboratories to assist testing of sound and television broadcasting equipment. Vacancies exist both for people with experience of this
type of work and for trainees. Excellent opportunities for promotion. Successful candidates will probably be in th Successfu c candidates will probably be in their 20 's
and have a keen interest in, and a minimum of two years' practical experience of electronics. They will have at least ONC or City \& Guilds Part 2 or equivale
Salary according to qualifications and experience in Salary according to qualiuitations and
JUNIOR LABORATORY TECHNICIANS Successful candidates will probably be aged $18-20$ and have a keen interest in electronics. They will either be
recently qualified to ONC or City \& Guilds Part recently qualified to ONC or City \& Guilds Part 2 (T4)
standard or have started the final year of such a course Salary according to qualifications in the range $£ 3465$ -
$£ 3735$. On the ob training given Salary according to qualification
$£ 3735$. On the job training given
Requests for application forms to The Engineering
Recruitment Officer, BBC, Broadcasting House Recruitment 1 Iticer, BBC, Broadcasting Hous
London W1A. Quoting Reference Number 79.E.2065/WW and enclosing a self addressed envelope at least $9^{\prime \prime} \times 4$ ", or telephone $01-5804468$. Ext. 2675 .
Closing date for completed application fors Closing date for completed application forms is 14 day
after publication.

BBG

YORKSHIRE

Graduate Engineer

to join an established Electronics Laboratory situated at the Company's
Headquarters at Stourton, Leeds 10 . The Laboratory is involved in the design, development and maintenance
of industrial control and non-destructive testing systems including eddy of industrial control and non-destructive testing systems
current, ultrasonic and strain measurement techniques.
There is a need to strengthen the Laboratory team to meet present and
future needs.
The successful candidate will be a graduate engineer with som
experience of industrial electrical / electronic control work.
The Company offers fully competitive conditions of employment; an
attractive progressive salary range: 23 days' annual holiday plus 8 public attractive progressive salary range: 23 days' annual holiday plus 8 public
holidays, Pension and Profit-sharing Schemes.
Applications, giving full details of age,
present salary should be addressed to:
The Senior Appointments Officer, Central Personnel Services,
Yorkshire Imperial Metals Limited, P.

Professional Careers in Electronics

All the others are measured by us.. At Marconi Instruments we ensure that the very best of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation.
if you are interested to hear more, please fill in the following details:-

Appointments

SERVICE ENGINEERS

EARN UP TO $£ 7,000$ p.a.
PLUS EXCITING VARIETY OF WORK
Electronic Brokers Limited are Europe's leading suppliers of refurbished test and computer equipment. Due to our continued expansion programme we have
immediate vacancies for the following experienced immediate vacancies for the following experienced personnel within our organisation which is situated
within easy reach of King's Cross and St. Pancras stations.

SERVICE ENGINEERS

Capable of repairing and recalibrating a wide variety of test equipment by well-known manufacturers, with the oppor-
tunity to progress on to digital equipment i.e. VDUs, tunity to progress on to digital equipment i.e. VDUs
printers, etc. Salary up to $£ 5,500$ p.a. basic plus bonus, printers, etc. Sala
LVs and overtime.

PDP11 ENGINEERS

Able to reconfigure computer systems. Salary negotiable
depending on experience. Plus bonus, LVs and overtime.

TELETYPE ENGINEERS

For complete refurbishing of teletypes. Opportunity to progress on to other computer peripherals. S .
$£ 5,000$ p.a. basic plus bonus, LVs and overtime.

ELECTRONIC BROKERS LIMITED

Phone Mike Jones on 01-837 7781 or write to him at Electronic Brokers Limited, 49-53 Pancras Road London, NW1.

TEST ENGINEERS

REQUIRED IN NEW ZEALAND
Are yo planning to emigrate to New Zea
work in the electronics industry on arrival?
AWA New Zealand Limited have a number of vacancies for test engineers working on a wide range of com munications equipment their modern plant near

The job entails produc
$A M$ and $F M$ products.
Successful applicants will be joining a staff of 120 people in a pleasant environment dedicated to exce

Salary is negotiable and will depend on qualifications and experience. If you have experien ce scene write now detailing qualifications and work history to

Mr. R. V. Johansen, Production Manage AWA New Zealand Limited Porirua, New Zealan

Foreign and Commonwealth Office
Telecommunications
Officers
in London and at Hanslope Park, Milton Keynes, for work on the installation, modification, maintenance and operation of HF, VHF, UHF and microwave receivers, associated test
equipment, recorders, telephone and teleprinter equipment equipment, recorders, telephone and
electronic ancillary apparatus (some using analogue and
digital digital techniques), voice frequency telegraph and other specialised equipment.

Candidates must have served an apprenticeship or have
equivalent training. They should normally have 3 years had equivalent training. They should normally have 3 years
relevant experience; and hold ONC in Engineering (with pas in Electrical Engineering 'A') or Applied Physics or TEC
SCOTEC in a relevant subject or equivalent qualification SCOTEC in a relevant subject or equivalent qualification
Ex-Service people, who have had suitable training and at leas Ex-Service people, who have had suitable ap
3 years appropriate service (as Staff Sergeant or equivalent)
will also be considered 1 also be considered.
Salary, starting between $£ 3285$ and $£ 4355$ (according to age), rises to $£ 4705$; London $£ 524$ mo
spects. Non-contributory pension scheme.
For further details and an application form (to be returned
by April 5, 1979) write to Civil Service Commission. Alenco Link, Basingstoke, Hants, RG21 1 JB, or telephone Basingstofe (0256) 68551 (answering service operates outside
office hours). Please quote $T / 5069$.

Electronics Engineer Dosoor

Polydor Limited, a member of the international
Polygram Group of Companies, marketing records and Polygram Group of Companies, marketing records and
tapes, has the above vacancy situated at their Head office in the West End.

We require a person with an excellent knowledge of our Recording Studio

Applicants, aged 24-30 should possess high qualifications for example a
audio field is essential.

We offer a good salary ${ }^{2}$ ' 4 wed andiday ontributory pension scheme and generous discount on Company products.

WIRELESS WORLD. APRIL 1979
. Appointments Zambia

CHIEF ENGINEER

Electro-mechanical
Components
Seling and Leo Limined dequire chiof Enjineer for their
 markets a wide range of perofessional connectors, circuit
protection and signal distribution components. rotection and signal distribution component
The Chief Engineer reports to the Divisional Director and
sponsible for directing and motivating component design, developmentant and production engineering teams towards providing new designs of electro-mechanical componenis
produced by up-to-date cost effective manufacturing produced by up-to-date c
processes and machines.
Applicants (male or female) should be Chartered success in engineering management and have experience of esign, production en aseering and tooling tor metaliw components produced by batch production methods.
A very attractive salary and em
offered for this senior appointment.
Applications which are confidential, should be addressed
to: Mr. D. Bostock, Personnel Manager, Belling and Lee td. Great Cambridge Road, Enfield, Middx. Phone: 01-363 5393

ELECTRONIC ENGINEERS

to work in Electronic Maintenance and Telecine Areas at the South bank Studios. Salary range $£ 4,008$ to $£ 5,777$ per annum
Please telephone 01-261 3237 for an application form.

Your skills will be welcomed and well rewarded in our young but ass-developing nation. We need your hel

Radio Engineces
 Radio Engineers

Supplement up to $£ 7026$ (married), $£ 3978$ (single). Requirements:
Either 5 -year apprenticeship, sevvice trade certificate, ICAO certificate or equivalent: knowledge of medium-powered
HF transmitters, frequency key shifting SSB and equipment HF transmiters, frequency key shiting, SSB and equipment, powered VHF, AM equipment: and knowledge of either (a) VHF, omni-range, automatic VHF, direction finders, distance measuring equipment, (b) instrument landing systems, (c) radar X-band terminal aquipment, public address equipment, airport magnetic type equipment, inter-office communications, underground control cables,
impulse and $D C$ switching systems or (e) teleprinter telegraphy (torn mpulse and DC switching systems or (e) teleprinter telegraphy (I) tape) and associate page printers, tape recorders (auto heads),
printing reperforators, semi-automatic message switching systems.
Responsibilities.

$$
\begin{aligned}
& \text { Installation/maintenance/overhaul of ground terminal radio } \\
& \text { communication equipment and navigational aids. }
\end{aligned}
$$

Strong Financial Attractions
As well as the salary quoted, you wili enjoy TAX-FREE
supplements, a TAX-FREE terminal gratuity, low-cost accommodation, low taxation and free passages. Together, these
 Salar--related supplements are reviewed annually y and pasicid byy the
British Govermment to designated British nationals (annual maximum Brrish Government to designated British nationals (annual maxin
is shown), while appointment grants, education allowances, car is shown), while appointment grants, education allowances, caa
loans, medical aid assistance and free holiday visits for childre didacted
Britian are also provided for those receiving supplements. N.S. valents given are approximations only due to cons
exchange rate fluctuations.

For further information please send full personal/professional details (without obligation position interests you, to: Recuiting Officer, Z-11 Cavendish Place London Wi.
Help us to help ourselves

THE POLYTECHNIC, HUDDERSFIELD Department of Music
SENIOR TECHNICIAN T5 £4,773-£5,073 Ref. NT. 381 Required as soon as possible a highly qualified technician (graduate or
equivalent) wwith appropriate experience, to teake techn-ical charge of the
Electronic Music Application forms avaiabie from the Establishment Office, Polytechnic
Oueensgate, Huddersfield HD1 30H. Telephone 22288, Ext. 2225 .

Application forms should be returned by 28th March, 1979.

Appointments ...

Electronic Design Engineers

with experience in digital design, engineering or product support.

 Reading,Berks.Digital Equipment, the inventors of the mini-computer
d world leaders in this field, have built a highly successand world leaders in this field, have built a highly success group of experts who are dedicated to meeting the specific and one-off needs of our clients.
The expansion of CSS has created a need for professional Engineers at all levels to take responsibility for either the engine
The need is for Engineers, qualified to Degree or HNC level, with at least 2 years experience (4 years+ for senior positions) in either digital design, engineering or product support, including responsibility for meeting schedules and technical targets. You should also be
to perform circuit and logic design and liaise with customers on technical matters. As a self-starter, you

must be able to demonstrate your ability

 agreed objectives set to strict schedule We are offering salaries in the range of $£ 5,500$ rom a major international company including relocation assistance to the Reading area where appropriate. Future career prospects are outstanding for successfu men or womenFor more information, telephone or write to: John
Atkins or Ray Renowden on Reading (0734) 85211 or write to Digital Equipment Company Ltd.,Arkwright Road, Reading, Berks. Please quote ref 509.

We've always looked for Test Engineers who weren't afraid of New ldeas

Pye Telecommunications have made many original contrbutions to the technology of mobile radio; for instance, w
were the first manufacturer to use printed circuit boards. But whatever we have achieved, we have always backed it with the specialist skills and abilities of our test engineers
the men and women who put the final seal of appoval all our equipment.
If you welcome the challenges offered by a wide variety of products, many incorporating up-to-the-minute tech
nology, then youll fit in at Pye. To join us you should have had sound experience of fault diagnosis, alignment, and testing at PCB level, preferably on communication equipment. Forces experience would be particularly suitable.
As the leading manufacturer of two-way UHF/VHF
systems in Europe, we can offer you excellent working conditions, well-equipped workshops with a broad rang
of modern test gear, good career prospects and a stable company structure where you will find security and job satisfaction. Starting salaries are between $£ 3800$ and $£ 4300$ The positions are based at Haverhill in Suffolk, where key worker housing may be available for those moving from other parts of the country.
For further details please write or phone, reversing
the charges where necessary, to Mrs. Cathering Dawe, Senior whersonnel Officer CoIne Valley Road, Haverhill, Suffolk
Tel: Haverhill 4422.

TOLOLOLOLOEOLOLOIOLOLOLOLOLOLOLOLOLOIO路

Pye Telecommunications Ltd
 (P)

For more details

Telecommunications \& Recording Specialists

There are opportunities to put your specialis fullest possible use in the following sections:

Equipment Control

- New Scotiand Yard and Thornton Heath
modification teams of technicians engaged on installation, operation intruder systems and sufficient practical aptitude to maintain systems at peak efficiency essentid)

Tape Recording - S.E. London
... Work includes preparing tor specialised tape recorders; copying and occasionally analysing various phenomena on tape recordings. Candidates should have a thorough understanding of tane recorders and recording
techniaues, have experience of work in professional broadcest studios techniques, have experience of work in professional broadcastst studios on audio,
and viveo recorders, and be fully conversant with checking tapes for quality and
defects. Ref $\mathrm{T} / 5057$ /

VHF/UHF Communications - S.E. London
a to be concerned with the use and modification of VHF and UHF
 proverye design end development of electronic equipment. Candidates should
have a good general knowledge of VHF and UHF communications techniques
and digital logic and digital logic systems, some laboratorr experience in the design and

Intruder Alarm Systems - East Dulwich
. Work includes surveying and planning alarm systems for use by Met. Police,
managing tests on alarm systems, and suggesting modifications to systemi to managing tests on alarm systems, and suggesting modifications to syste
educe false calls. Candidates should have a clear understanding of the requirements for power suppplies used in the alarm systems industry (active and
standby). Ref. $\mathrm{T} / 5057 / 1$.

Network Planning and Implementation - Central London

To join group responsible for the planning and implementation of Met. Oifice speech, telegraph and data networks, and day-to-day organisation
Office telecommunications services. Candidates should have had recent xperience of P.O. procedures for the provision of PBX X and associated line
lant, and a working knowledge of telegraph and/or data transmission. Ref. T/5053/1.
All candidates (men and women aged at least 21) must have ONC in Certificatite or an en equivalent or hrigheal Engineering A) or appropriate $C .+G$ Salary, starting between $£, 750$ and d $^{4}, 820$, (according to age), rises to
$£ 5,170$. Inner London salaries quoted $£ 190$ less at Thornton Heath. Fromotion prospects. Non-contributory pension scheme. write to Civic Service Commission, Alencon Link, Basingstoke, Hants RG21. JB, or telephone Basingstoke (0256) 68551 (answering service operates
outside office hours). Please quote appropriate referance.

A challenge to your skillwith the Metropolitan Police

PRECISION SHEET METAL
chasis, poris
panels, etc., steel,
tain

Appointments

Classified

 148 SITUATIONS VACANT

WIRELESS WORLD. APRIL 1979

Marine Transmitter Development Engineer

In Marine Division we are responsible for the design and development of advanced HF Communication systems for the Merchant Navy at both low and high powers using solid state techniques as well as valves.
The two engineers we are seeking will have a professional qualification and some years experience of one of the following: Transmitter RF design, solid state drives and frequency generation equipment in general. You should also
have the ability to progress your design through the production phase. ave the ability to progres your design through the production phase Communication Systems Ltd., New Street, Chelmsford, Essex. Telephone Chelmsford 53221.

INVERTERS break" (2ms) static sw
19" rack.Auto Charger.

Technicians: An

 Instrumentation Challenge withthe Health \& Safety Executive These posts, at Cricklewood in London, are in the Instriu ment Maintenance Unit, which undertakes acceptance testing of new equipment, and provides a maintenance and reapair
service for an extensive range of portable measuring instru ments and sampling equipment. This work is expanding to cover a variety of analytical equipment, and some instrume
development is undertaken. The technician appoin
personelly involved in the more demanding maintenance personally involved in the more demanding maintenance
calibration and testing work carried out on sophisticated instruments, often without the use of circuit diagrams or
working plans. In addition, the successful candidate will supervise and train other members of the team, and participate in the design of new calibration equipment, the modification o - The successful candidate for the second post will work The successtul candidate for the second post will work on ments. This will involve constructing, setting up and checking calibration test rigs, and the diagnosis of instrument faults. Candidates for either post must hold ONC or equivalent in years' training (eg apprenticeships and/or full-time study) and experience; at least eight years required for the senior pos They must have sound theoretical knowledge and practica
Salary for the senior oost

Salary for the senior post will start at $£ 4600$ and rise to $£ 5140$. For the second post, salary starts between $£ 3320$ and £ $£ 045$ according to age, and rises to $£ 4600$. Promotion For further details and an to be returne For further details and an application form (to be returned
by 5 Aprit, 1979) write to Civil Service Commission, Alencon Link; Basingstoke, Hants RG21 1 JB, or telephone Basingstoke (0256) 68551 (answering service operates outside offic
hours): Please quote ref: $T(15) 648$, 2 ,inow

SOWTER TRANSFORMERS

TO WANUFACTURERS WHOIESALERS \& BULK BUYERS ONLY

 CAPACITORS. Silver mica, Polystyrene, Polyester, Disc Ceramics Convergence Poots, Slider Pots, Electrolytic condensors, Can Types,
Axial, Radial, etc.
 450749 21 Lodge Lane, N. Finchley \& MAYCO DISPOSALS

COMPUTER POWER SYSTEM Interport Mains-Store Ltd.

 5m
:watiaz

When you buy Hectaphone

 you buy more than Intercom 1 WUGHAMS EIECTRONUC
WMM INUCATONS LIMITED Ferndown Industrial Estate, 96 Cobham Road, ${ }_{\text {Approx }} £ 153.30$ Approx $£ 313.50$ tpporix $£ 858.00$
Wimborne, Dorset. BH21 7RE. Ferndown Industrial Estate, 96
Wimborne, Dorset. BH21 TRE.
Tel: (0202) 893514

EdUCATIONAL

WIRELESS WORLD. APRIL 1979 ARTICLES FOR SALE

SPOT CASH
 Telex: 24224 Ti: 24 Quote Ret 3165

(O) PLYMQUTH

HONOURS DEGREE IN COMMUNICATION ENGINEERING Enhance your career opportunities by studying for a

PCB ARTWORK DESIGN SERVIC

degree in this interesting and rewarding field of engineering. Plymouth Polytechnic offers a

4-year sandwich
course to students with satisfactory ' A ' levels, ONC/OND, C \& G or equivalent qualifications. Sponsorship and grańts are available.
For further
information contact
Head of
Communication
Engineering,
Plymouth
Polytechnic.

I.H.S. SYSTEMS

Due to expansion of our manutac-
turing facities we are able to udder
take assembly and testing of circuit take assembly and esting of ciricuit
boardsor complete units on addition to
contract development.

Telephone to arrange for one of our engineers to call and discuss your

 engineers to call and discuss yourrequirements, or send full detais tor
prompt quotation.

TEL 01-253 4562

OF ELECTRONIC

 EQUIPMENT AND CHILTMEAD LTD

MINICOMPUTERS PERIPHERALS INSTRUMENTATION
For fastest, better CASH offer $\underset{\text { Reading (0734) } 586419}{\text { CHILTMEAD }}$

Drake Circus, Plymouth, Devon. PL4 BAA

CAPACITY AVAILABLE	
	Wind your own co
PCB ASSEMBLY	Short runs,
CAPACITY AVAILABLE	
Lew or high volume. single or double sided,	Long runs,
Using the Zevatron soldering system and on to deliver high	
	Menvtyoes
production. Phone or write. We will be pleased to	simple.
TW ELECTRONICS LTD.	complex.
Sub contracting assemblers to the E	YOU namert
COIL WINDING	
large orsmall	wll help you
Boduction runs	Mnetu
RTRONICS LTD	
OnER NDUSTRIALESTATE	AVO LIMITED ArchcIffe Road, over rent crit 9en Tel: 0504202620 Telex: 96285
HOUSE LANE NHAM KENT BR3 IUG	
Specialised PCB Service	HIGHWAY ELECTRONICS. Logic
Layouts - Photography - DritingRofler Tinning = Gold Plating	
	 phone Cwmbran (06333) ${ }^{68042}$ (83
Legand Printing - Protiling	
	$\frac{18347}{\text { SKILLED HAND assembly }}$
ofton Electronics Lim	SK
35 Grosvenor Road, Twickenham	

Here's why you should buy an IC.E. instead of just any multimeter

* Best Value for money * Used by professional engineers, D.I.Y.
enthusiasts, hobbyists, service engineers. * World-wide proven reliability. * Low servicing costs. * Large mirror scale meter. * Fully protected against overload. *Large range of inexpensive accessories. * 12 month warranty, backed by a full after
sales service at E.B.Sole U.K. Distributors sales from $£ 16.60-£ 32.00+$ VAT Send for full colour leaflet and prices on whole range including accessories. 1 - $=$ ELECTRONIC 49-53 Pancras BROKERS LIMITED 49-55 Pancrasa Road, London NW1 20B.
Tel: 01-837 7781. Telex: 298694.
ww-104 FOR FURTHER DETALLS

EnETURE

New! Equalization anolyzer...

Balance a system...Balance a budget.

Quick and accurate adjustment of sound system frequency response finally within the reach of mos Equalization Analyzer System is revolutionary breakthrough that lets you "see" room response trouble spots in sound reinforcement and hi-fi systems-withour bulky equipment, and at a fraction of the cost of
The portable, 11 -pound system (which includes the analyzer, sp
microphone, accessories, and carrying case) puts an equal-energ
per-octave "pink noise" test signal
into your sound system. You place the microphone in the listening area and simply adjust the filters of an Octave equalizer (such as the Shur display indicates that each of 10 isplay indicates that each of 10
octaves are properly balanced. You can achieve accuracy within $\pm 1 \mathrm{~dB}$, without having to "play it by ear." Send for complete descriptive brochure.
Shure Electronics Limited Eccleston Road Telephone: Maidsto satellite, was launched from Cape Canaveral on May 11th 1978.

Now orbiting the equator at a height of 23,000

- miles, OTS-2 was built for the European Space
- Agency by the MESH consortium, led, by British A crospace Dynamics Group, Steyẹnage
In building OTS-2, complete precision was called
- for. Which is why Ersin Multicore solders were used for many of the soldering operations. .

Quite simply, Multicore solders have that kind of reputation. For quality, toŭghness and reliability. That's why so many electronics manufacturers won't use anything else. :

Next time you need solder of any kind, aim as high as OTS-2 . . and use Multicore:

Full details of Ersin Multicore solders, solder chemicals and high purity-bar solderş for automatic soldering from \bullet

Multicore Solders Litd

, Maylands Avenue
Hemel Hempstead Herts HP2 7EP
Tel: Hemel Hempstead 3636
Telex: 82363

[^0]: wW - 086 FOR FURTHER DETAILS

[^1]: The most commonly used notch net

